[1]
Y. Imanaka. Multilayered low temperature co-fired ceramics (LTCC) technology. Springer, New York, (2005).
Google Scholar
[2]
M. Eberstein, C. Glitzky, M. Gemeinert, et al. Design of LTCC with high thermal expansion. Int. J. Ceram. Technol., 6( 2009) 1-8.
Google Scholar
[3]
M. Eberstein, T. Rabe, W. A. Schiller. Influence of the glass phase on densification, microstructure, and properties of low-temperature co-fired ceramics. Int. J. Ceram. Technol., 3(2006) 428-436.
DOI: 10.1111/j.1744-7402.2006.02108.x
Google Scholar
[4]
D. N. Yoon, W. J. Huppmann. Grain growth and densification during liquid phase. Acta Metall., 27(1979)693-698.
DOI: 10.1016/0001-6160(79)90020-8
Google Scholar
[5]
Song Chen, S. R. Zhang, X. H. Zhou. Thermal and dielectric properties of the LTCC composites based on the eutectic system BaO-Al2O3-SiO2-B2O3. J. Mater. Sci: Mater. Electron. 22(2011) 453-457.
DOI: 10.1007/s10854-010-0121-z
Google Scholar
[6]
Song Chen, S. R. Zhang, X. H. Zhou, et al., Phase formation and properties of the LTCC composite based on the eutectic system BaO-ZnO-SiO2-B2O3. J. Alloys Compd. 498(2010) 185-190.
DOI: 10.1016/j.jallcom.2010.03.152
Google Scholar
[7]
Dhanesh Thomas, Mailadil T. Sebastian. Effect of Zn2+ substitution on the microwave dielectric properties of LiMgPO4 and the development of a new temperature stable glass free LTCC, J. Eur. Ceram. Soc., 32(2012) 2359-2364.
DOI: 10.1016/j.jeurceramsoc.2012.01.031
Google Scholar
[8]
Song Chen, Degui Zhu. Phase formation and properties of BaO-B2O3-SiO2 and –Al2O3 ceramics prepared via an aqueous suspension route, J. Alloys Compd. 539(2012) 73-79.
DOI: 10.1016/j.jallcom.2012.05.013
Google Scholar
[9]
A. B. Meshalkin, A. B. Kaplun. Study of phase equilibria in system BaO-B2O3 from 32 to 67 mol% B2O3, J. Cryst. Growth , 275(2005) e301-e305.
DOI: 10.1016/j.jcrysgro.2004.10.103
Google Scholar
[10]
E.M. Levin, H F. McMurdie, F. P. Hall. Phase Diagrams for Ceramists. (the American Ceramic Society, Columbus, 1956).
Google Scholar
[11]
J.C. Debsikdar. Gel to glass conversion and crystallization of alkoxy-derived barium aluminosilicate gel, J. Non-Cryst. Solids 144 (1992) 269-276.
DOI: 10.1016/s0022-3093(05)80410-7
Google Scholar
[12]
J.C. Debsikdar, O.S. Sowemimo. Effect of zirconia addition on crystallinaity, hardness, and microstructure of gel-derived barium aluminosilicate, BaAl2Si2O8, J. Mater. Sci. 27 (1992) 5320-5324.
DOI: 10.1007/bf02403837
Google Scholar
[13]
Masafumi Takesue, Hiromichi Hayashi, Richard L. Smiith Jr. Thermal and chemical methods for producing zinc silicate (willemite): A review, Prog. Cryst. Growth and Ch. Mate., 55(2009)98-124.
DOI: 10.1016/j.pcrysgrow.2009.09.001
Google Scholar
[14]
R. M. German, S. Farooq, C. M. Kipphut. Mater. Kinetics of liquid sintering, Sci. Eng. A 105/106 (1988) 215-224.
DOI: 10.1016/0025-5416(88)90499-5
Google Scholar