[1]
K. Levi and Y. Weiss. Learning object detection from a small number of examples: The importance of good features. In Proc. CVPR (Washington, USA, June 27- July 2, 2004). Vol. 2, pp.53-60.
DOI: 10.1109/cvpr.2004.1315144
Google Scholar
[2]
A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence Vol. 97(1997), pp.245-271.
DOI: 10.1016/s0004-3702(97)00063-5
Google Scholar
[3]
Friedman J, Hastie T, Tibshirani R. Additiv logistic gression; A statistical view of boosting. The Annals of Statistics Vol. 28(2000), pp.337-407.
Google Scholar
[4]
D. Redpath and K. Lebart. Observations on boosting feature selection. In Proc. Multiple Classifier Systems (Seaside, USA, June 13-15, 2005). Vol. 3541, pp.32-41.
DOI: 10.1007/11494683_4
Google Scholar
[5]
R. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking features. Pattern Analysis and Machine Intelligence, Vol. 27(2005), pp.1631-1643.
DOI: 10.1109/tpami.2005.205
Google Scholar
[6]
Freund Y. Boosting a weak learning algorithm by majority. Informatin and Computation Vol. 121(1995), pp.256-285.
DOI: 10.1006/inco.1995.1136
Google Scholar
[7]
R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. In Proc. ICML (Madison, USA, July 24-27, 1998). Vol. 26, pp.1651-1686.
DOI: 10.1214/aos/1024691352
Google Scholar
[8]
R. Schapire. The boosting approach to machine learning: An overview. In Proc. MSRI Workshop on Nonlinear Estimation and Classification (Berkeley, USA, March, 2001).
Google Scholar
[9]
Schapire R E, Singer Y. BoosTexter: A boosting-based system for text categorization. Machine Learning Vol. 39(2000), pp.135-168.
Google Scholar
[10]
Viola P, Jones M. Robust real-time face detection. International Journal of Computer Vision Vol. 57(2004), pp.137-154.
DOI: 10.1023/b:visi.0000013087.49260.fb
Google Scholar
[11]
A. Opelt, A. Pinz, M. Fussenegger. Generic object recognition with boosting. Pattern Analysis and Machine Intelligence Vol. 28(2006), pp.416-431.
DOI: 10.1109/tpami.2006.54
Google Scholar