Pull-in Voltage Analysis of Carbon Nanotube Based Electrostatic Actuators by Using the ANSYS Software

Article Preview

Abstract:

This Paper presents the design and simulation of single walled carbon nanotube (SWCNT) based cantilever type electrostatic actuator using finite element analysis method (FEM). The pull-in voltage has been calculated for various chirality of the nanotube based cantilever beam actuators. The pull-in voltage are obtained for the various gap between electrode and ground of the cantilever beam through extensive simulations using ANSYS software. The results obtained shows that pull-in voltages varies from 2.5 to 13.5V with respect to nanotube chirality and gap length.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-123

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. Arlett, M. R. Paul, J. E. Solomon, M. C. Cross, S. E. Fraser and M. L. Roukes, Lect. Notes Phys. Vol. 711 (2007), p.241.

Google Scholar

[2] Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci and M. L. Roukes, Nano Lett. Vol. 6 (2006), p.583.

Google Scholar

[3] C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth and C. Hierold, Nano Lett. Vol. 6 (2006), p.1449.

DOI: 10.1021/nl0606527

Google Scholar

[4] J. Song, J. Zhou and Z. L. Wang, Nano Lett. Vol. 6 (2006), p.1656.

Google Scholar

[5] J. M. Kinaret, T. Nord and S. Viefers, Appl. Phys. Lett., Vol. 82 (2003), p.1287.

Google Scholar

[6] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. -L. Cheung and C. M. Lieber, Science Vol. 94 (2000), p.289.

Google Scholar

[7] R. Saito, G. Dresselhaus, and M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998).

DOI: 10.1016/s0921-5107(00)00444-x

Google Scholar

[8] P.A. Gowri sankar, K. udhayakumar, European J. Scientific Research, Vol. 60 (2011), pp.342-358.

Google Scholar

[9] A. B. Kaul, E. W. Wong, L. Epp and B. D. Hunt, Nano Letter. Vol. 6 (2006), p.942.

Google Scholar

[10] Z. Chen, L. Tong, Z. Wu and Z. Liu, Appl. Phys. Letter, Vol. 92 (2008), pp.103-116.

Google Scholar

[11] J. E. Jang, S. N. Cha, Y. J. Choi, D. J. Kang, T. P. Butler, D. G. Hasko, J. E. Jung, J. M. Kim and G. A. J. Amaratunga, Nature Nanotech. Vol. 3 (2008), p.26.

Google Scholar

[12] Li C, Chou TW, J. Solid Struct. Vol. 40 (2003), p.2487–2499.

Google Scholar

[13] Tserpes KI, Papanikos P, Composites, Part B. Vol. 36 (2005), p.468–477.

Google Scholar

[14] Poncharal P, Wang ZL, Ugarte D, De Heer WA, Science Vol. 283 (1999), p.1513–1516.

Google Scholar

[15] Stephen D. Senturia: Microsystem design. Kluwer Academic Publishers, Norwell, MA, USA, (2001).

Google Scholar

[16] Jackson J D, Classical Electrodynamics, 3rd edition New York: Wiley, (1999).

Google Scholar

[17] J. E. Lennard-Jones. Proceedings of the Royal Society of London. Series A, (1930), pp.598-615.

Google Scholar

[18] Marc Dequesnes, S V Rotkin, and N R, Aluru. Nanotechnology, Vol. 13 (2002), pp.120-131.

Google Scholar