[1]
Wenyi W. Early Detection of Gear Tooth Cracking Using The Resonance Demodulation Technique[J]. Mechanical Systems and Signal Processing. 2001, 15(5): 887-903.
DOI: 10.1006/mssp.2001.1416
Google Scholar
[2]
Yi Q, Shuren Q, Yongfang M. Research on iterated Hilbert transform and its application in mechanical fault diagnosis[J]. Mechanical Systems and Signal Processing. 2008, 22(8): 1967-(1980).
DOI: 10.1016/j.ymssp.2008.01.014
Google Scholar
[3]
Junsheng C, Dejie Y, Yu Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis[J]. Mechanical Systems and Signal Processing. 2007, 21(2): 668-677.
DOI: 10.1016/j.ymssp.2005.10.005
Google Scholar
[4]
Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration. 2006, 289(4-5): 1066-1090.
DOI: 10.1016/j.jsv.2005.03.007
Google Scholar
[5]
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. 1998, 454(1971): 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[6]
Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annu. Rev. Fluid Mech. 1999(31): 417-457.
DOI: 10.1146/annurev.fluid.31.1.417
Google Scholar
[7]
Peng Z K, Tse P W, Chu F L. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J]. 2005, 19(5): 974-988.
DOI: 10.1016/j.ymssp.2004.01.006
Google Scholar
[8]
Huang N E, Wu M C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proc. R. Soc. Lond. 2003, A(459): 2317-2345.
DOI: 10.1098/rspa.2003.1123
Google Scholar
[9]
Dätig M, Schlurmann T. Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves[J]. Ocean Engineering. 2004, 31(14–15): 1783-1834.
DOI: 10.1016/j.oceaneng.2004.03.007
Google Scholar
[10]
Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface. 2005, 2(5): 443-454.
DOI: 10.1098/rsif.2005.0058
Google Scholar
[11]
Wang Y X, He Z J, Zi Y Y. A Comparative Study on the Local Mean Decomposition and Empirical Mode Decomposition and Their Applications to Rotating Machinery Health Diagnosis[J]. Journal of Vibration and Acoustics-Transactions of The ASME. 2010, 132(021010): 1-10.
DOI: 10.1115/1.4000770
Google Scholar
[12]
Liu W Y, Zhang W H, Han J G, et al. A new wind turbine fault diagnosis method based on the local mean decomposition[J]. Renewable Energy. 2012, 48: 411-415.
DOI: 10.1016/j.renene.2012.05.018
Google Scholar
[13]
Cheng J S, Zhang K, Yang Y. An order tracking technique for the gear fault diagnosis using local mean decomposition method[J]. Mechanism and Machine Theory. 2012, 55: 67-76.
DOI: 10.1016/j.mechmachtheory.2012.04.008
Google Scholar
[14]
Wang Y X, He Z J, Xiang J W, et al. Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox[J]. Mechanism and Machine Theory. 2012, 47: 62-73.
DOI: 10.1016/j.mechmachtheory.2011.08.007
Google Scholar
[15]
Lu S, Xiaojun Z, Zhigang Z, et al. Boundary-extensionmethod in hilbert-huang transform[J]. Journal ofvibration and shock. 2009(08): 168-171.
Google Scholar