Capillary Absorption Dynamics for Cementitious Material Considering Water Evaporation and Tortuosity of Capillary Pores

Article Preview

Abstract:

This paper presents the theoretical analysis of capillary absorption dynamics for cemementitious material. Fractal theory is applied to analyse tortuosity of capillary pores in cementitious material and a definition of tortuosity is given. The dynamic equation of capillary absorption considering water evaporation and tortuosity of capillary pores is derived. Based on the dynamic model, the capillary coefficient and sorptivity of concrete are explained theoretically. In absorption test, water evaporation is one of the main reasons caused variations from linearity between water absorption height and the square root of time, or between water amount absorbed and the square root of time. In cementitious material, the evaporation rate is very small compare to capillary flow velocity at the initial time of absorption test. For simplification of testing procedure, there is no meaning to modify absorption test.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 821-822)

Pages:

1213-1218

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Hall: Mag. Concrete Res. Vol. 41(1989), p.51.

Google Scholar

[2] E. W. Washburn: Phys. Rev. Vol. 17(1921), p.273.

Google Scholar

[3] J. Schoelkopf, P. A. C. Gane, C. J. Ridgway and G. P. Matthews: Colloid Surface A: Physicochem Eng. Aspects. Vol. 206(2002), p.445.

Google Scholar

[4] L. Hanzic and R. Ilic: Cem. Concr. Res. Vol. 33(2003), p.1385.

Google Scholar

[5] C. Hall, W. D. Hoff, S. C. Taylor, M. A. Wilson, B. G. Yoon, H. W. Reinhardt and A. M. Donald: J. Mater. Sci. Lett. Vol. 14(1995), p.1178.

Google Scholar

[6] C. Hall: Cem. Concr. Res. Vol. 37( 2007), p.378.

Google Scholar

[7] L. Hanzic and L. Kosec, I. Anzel: Cem. Concr. Compos. Vol. 32(2010), p.84.

Google Scholar

[8] S. J. Ianson and W. D. Hoff: Build Environ. Vol. 21(1986), p.195.

Google Scholar

[9] L. M. K. Boelter, H. S. Gordon and J. R. Griffin: Ind. Eng. Chem. Vol. 38(1946), p.596.

Google Scholar

[10] M. Al-shammiri: Desalin. Vol. 150(2002), p.189.

Google Scholar

[11] S. Diamond: Cem. Concr. Res. Vol. 29(1999), p.1181.

Google Scholar

[12] P. Horvath, P. Smid, I. Vaskova and M. Harbovsky: Int. J. Light Electron Opt. Vol. 121(2010), p.206.

Google Scholar

[13] A. Carpinteri, B. Chiaia and P. Cornetti: Mater. Sci. Eng. Vol. 365(2004), p.235.

Google Scholar

[14] M. Paggi and A. Carpinteri: Solitons Fractals. Vol. 40(2009), p.1136.

Google Scholar

[15] T. Ficker: Theor. Appl. Fract. Mech. Vol. 50(2008), p.167.

Google Scholar

[16] V. E. Saouma, C. C. Barton and N. A. Gamaleldin: Eng. Fract. Mech. Vol. 35(1990), p.47.

Google Scholar

[17] P. Zhang, F. H. Wittmann, T. J. Zhao, E. H. Lehmann, P. Vontobel and S. Hartmann: Int. J. Restoration Build. Monuments. Vol. 15(2009), p.91.

Google Scholar

[18] J. G. Dai, Y. Akira, F. H. Wittmann, H. Yokota and P. Zhang: Cem. Concr. Res. Vol. 32(2010), p.101.

Google Scholar