Hydrothermal Synthesis and Characterization of Nb5+-Doped SrTiO3 Powders

Article Preview

Abstract:

Nb5+-doped SrTiO3 (STO) particles were synthesized by a simple hydrothermal reaction at 150 °C for 4h. It was found that the main diffraction peaks of Nb5+-doped STO samples with different dosage of dopants shifted gradually to low angles, indicating the little lattice parameter expansions which result from the partial substitution of Ti4+ (0.061 nm) by Nb5+ (0.064 nm) in perovskite structure. From the lattice parameters, the max Nb5+ dopant concentration is about 2 mol%, and the particles obtained were 200 nm-sized and monodispersed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 821-822)

Pages:

913-916

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Javier, G. Philippe: Nature, Vol. 422, (2003) p.506.

Google Scholar

[2] H.B. Lu, S.Y. Dai, Z.H. Chen, L. Yan, Y.L. Zhou ,G.Z. Yang: Chin. Sci. Bull. Vol. 48, (2003) p.1328.

Google Scholar

[3] M. Kubo, Y. Oumi, R. Miura, A. Stirling, A. Miyamoto, M. Kawasaki, M. Yoshimoto, H. Koinuma: J. Phys. Rev. B. Vol. 56, (1997) p.13535.

Google Scholar

[4] G.L. Yuan, J.M. Liu, K.B. Kishi, H.L.W. Chan, C.L. Choy, Z.G. Liu: Solid State Commun. Vol. 131, (2004) p.131.

Google Scholar

[5] T. Muramatsu, Y. Muraoka, T. Yamauchi, J. Yamaura, Z. Hiroi: J. Magn. Magn. Mater. Vol. 272-276, (2004) p. E787.

Google Scholar

[6] H.B. Lu, S.Y. Dai, Z.H. Chen, L.F. Liu, H.Z. Guo, W.F. Xiang, Y.Y. Fei, M. He, Y.L. Zhou, G.Z. Yang: Chin. Phys. Lett. Vol. 20, (2003) p.137.

Google Scholar

[7] H. Tabata, H. Tanaka, T. Kawai: Appl. Phys. Lett. Vol. 65, (1994) p. (1970).

Google Scholar

[8] H.B. Lu, G.Z. Yang, Z.H. Chen, S.Y. Dai, Y.L. Zhou, K.J. Jin, B.L. Cheng, M. He, L.F. Liu, H.Z. Duo, Y.Y. Fei, W.F. Xiang, L. Yan: Appl. Phys. Lett. Vol. 84, (2004) p.5007.

Google Scholar

[9] O. Nakagaware, T. Shimuta, T. Makino, S. Arai, H. Tabata, T. Kawai: Vacuum, Vol. 66, (2002) p.397.

Google Scholar

[10] C. Mitra, P. Paychaudhuri, G. Kobernik, K. Dorr, K.H. Muller, L. Schultz, R. Pinto: Appl. Phys. Lett. Vol. 79, (2001) p.2408.

Google Scholar

[11] D.M. Newns, J.A. Misewich, C.C. Tsuei, B.A. Scott, A. Schrott: Appl. Phys. Lett. Vol. 73, (1998) p.780.

DOI: 10.1063/1.121999

Google Scholar

[12] T. Shimizu, H. Okushi: J. Appl. Phys. Vol. 85, (1999) p.7244.

Google Scholar

[13] H. Tanaka, J. Zhang, T. Kawai: Phys. Rev. Lett. Vol. 88, (2002) p.0272041.

Google Scholar

[14] H.B. Lu, S.Y. Dai, Z.H. Chen, Y.L. Zhou, B.L. Cheng, K.J. Jin, L.F. Liu, G.Z. Yang, X.L. Ma: Appl. Phys. Lett. Vol. 86, (2005) p.32502.

Google Scholar

[15] C.L. Chen, Y.L. Wei, D.R. Chen, X.L. Jiao: J. Mater. Proc. Technol. Vol. 205, (2008) p.432.

Google Scholar

[16] H.M. Yang, K.J. Kan, J. Ouyang, Y.L. Li: J. Alloys Compd. Vol. 485, (2009) p.351.

Google Scholar