[1]
G. Kaiser, G. Tolg. Hutzinger: Environmental Photochemistry. Springer, Berlin. (1980).
Google Scholar
[2]
F.M. D'Itri. The Environmental Mercury Problem. Chem. Rubber Co., Cleveland. (1972).
Google Scholar
[3]
Fitzgerald, W.F., Gill, et al. An Equatorial Pacific Ocean source of atmospheric mercury. Science, 224, p.579–599, (1984).
DOI: 10.1126/science.224.4649.597
Google Scholar
[4]
Amyot, M., Mierle, et al. Sunlight-induced formation of dissolved gaseous mercury in lake waters. Environmental Science and Technology, 28, p.2366–2371, (1994).
DOI: 10.1021/es00062a022
Google Scholar
[5]
C Beucher, P . W. W. Chung, C Richard, G Maihot, M Bolte. Dissolved gaseous mercury formation under UV irradiation of unamended tropical waters from French Guyana. The Science of the Total Environment, 290(1-3), p.131–138, (2002).
DOI: 10.1016/s0048-9697(01)01078-6
Google Scholar
[6]
L. W. Chang, H. A. Hartmann. Ultrastructural studies of the nervous system after mercury intoxication. Acta Neuropathol, 20(4), p.122–138, (1972).
DOI: 10.1007/bf00691129
Google Scholar
[7]
D. M. Orihel, M. J. Paterson, P. J. et al. Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environ Sci Technol., 41(11), p.4952–4958, (2007).
DOI: 10.1021/es063061r
Google Scholar
[8]
L. Si, P. Ariya. Reduction of oxidized mercury species by dicarboxylic acids (C2–C4): kinetic and product studies. Environ Sci Technol., 42(11), p.5150–5155, (2008).
DOI: 10.1021/es800552z
Google Scholar
[9]
B. Allard, I. Arsenie. Abiotic reduction of mercury by humic substances in aquatic system-an important process for the mercury cycle. Water Air Soil Pollut., 56(1), p.457–464, (1991).
DOI: 10.1007/bf00342291
Google Scholar
[10]
Y.T. Zhang, R.G. Sun, M. Ma, D. Y. Wang. Study of inhibition mechanism of NO3- on the photoreduction of Hg(II) in artificial water. Chemosphere, 87(2), pp.171-176, (2012).
DOI: 10.1016/j.chemosphere.2011.11.077
Google Scholar
[11]
Xiao, Z.F., Munthe, et al. Photochemical behavior of inorganic mercury compounds in aqueous solutions[J]. Mercury Pollution: Integration and Synthesis. 18, p.581–592, (1994).
Google Scholar
[12]
Allard, B., Arsenie, et al. Abiotic reduction of mercury by humic substances in aquatic system–an important process for the mercury cycle[J]. Water, Air, Soil Pollut, 56, p.457–464, (1991).
DOI: 10.1007/bf00342291
Google Scholar
[13]
H. Zhang, S. E. Lindberg. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater. Environ Sci Technol., 35(5), p.928–935, (2001).
DOI: 10.1021/es001521p
Google Scholar
[14]
L. Whalin, E. H. Kim, R. Mason. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar Chem., 107(3), p.278–294, (2007).
DOI: 10.1016/j.marchem.2007.04.002
Google Scholar
[15]
N. M. Scully, D. R. S. Lean. The attenuation of ultraviolet radiation in temperate lakes. Arch Hydrobiol, 43, pp.135-114, (1994).
Google Scholar