Globally Optimal Weighted Fusion White Noise Deconvolution Estimator

Article Preview

Abstract:

White noise deconvolution or input white noise estimation has a wide range of applications including oil seismic exploration, communication, signal processing, and state estimation. A globally optimal weighted fusion white noise deconvolution estimator is presented for the multisensor linear discrete systems using the Kalman filtering method. It is derived from the centralized fusion white noise deconvolution estimator so that it is identical to the centralized fuser, i.e. it has the global optimality. Compared with the existing globally suboptimal distributed fusion white noise estimators, the proposed white noise fuser is given based on the local Kalman predictors, and the computation of complex covariance matrices is avoided. A simulation for the Bernoulli-Gaussian input white noise shows the effectiveness of the proposed results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

422-427

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Mendel. White-estimators for seismic data processing in oil exploration. IEEE Trans. Automatic Control. Vol. 22(1977), pp.694-706.

DOI: 10.1109/tac.1977.1101597

Google Scholar

[2] J. M. Mendel, J. Kormylo. New fast optimal white-noise estimators for deconvolution. IEEE Trans. Geosci. Electron. Vol. 15(1977), pp.32-41.

DOI: 10.1109/tge.1977.294511

Google Scholar

[3] J. M. Mendel. Optimal Seismic Deconvolution: An Estimation-Based Approach. Academic Press, New York, (1983).

Google Scholar

[4] Z. L. Deng, H. S. Zhang, S. L Liu, L. Zhou. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems. Automatica. Vol. 32(1996), pp.199-216.

DOI: 10.1016/0005-1098(96)85549-x

Google Scholar

[5] Z. L. Deng. Unifying and universal optimal white noise estimators for time-varying systems. Control Theory appl. Vol. 21(2003), pp.143-146.

Google Scholar

[6] J. A. Reocker, C. D. McGillem. Comparison of two-sensor tracking method based on state vector fusion and measurement fusion. IEEE Trans. Aerospace and Electronic Systems. Vol. 24(1988), pp.447-449.

DOI: 10.1109/7.7186

Google Scholar

[7] Q. Gan, C. J. Harris. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Trans. Aerospace and Electronic Systems. Vol. 37(2001), pp.273-280.

DOI: 10.1109/7.913685

Google Scholar

[8] S. L. Sun. Multi-sensor information fusion white noise filter weighted by scalars based Kaman predictor. Automatica. Vol. 40(2004), pp.1447-1453.

DOI: 10.1016/j.automatica.2004.03.012

Google Scholar

[9] X. J. Sun, Y. Gao, Z. L. Deng. Information fusion white noise deconvolution estimators for time-varying systems. Signal Processing. Vol. 88(2008), pp.1233-1247.

DOI: 10.1016/j.sigpro.2007.11.011

Google Scholar

[10] X. J. Sun, Y. Gao, Z. L. Deng, C. Li, J. W. Wang. Multi-model Information Fusion Kalman Filtering and White Noise Deconvolution. Information Fusion. Vol. 11(2010), pp.163-173.

DOI: 10.1016/j.inffus.2009.06.004

Google Scholar

[11] H. R. Hashemipour, S. Roy, A. J. Laub. Decentralized Structures for Parallel Kalman Filtering. IEEE transactions on Automatic Control. Vol. 33(1988), pp.88-93.

DOI: 10.1109/9.364

Google Scholar

[12] B. D. O. Anderson, J. B. Moore. Optimal Filtering. Englewood Cliffs. New Jersey: Prentice-Hall, (1979).

Google Scholar

[13] Z. L. Deng. Information Fusion Filtering Theory with Applications. Harbin: Harbin Institute of Technology, (2007).

Google Scholar