Recycling Piezo-Crystal Based Sounders from Small (Electronic) Devices into Energy Harvesting Devices

Article Preview

Abstract:

Many small devices now incorporate a sound feedback device using piezo crystal plates of varying sizes (10mm-20mm diameter). After these devices are discarded, the piezo crystal plates are usually of no value other than a curious toy or component. This work presents a potential use of this device (18.8mm diameter unimorph PZT 5H piezo plate) for harvesting energy by mounting it on the wrist (at the base of meta carpal) of human subjects. The subjects were made to walk at an average steady pace of 0.7m/s. The device generated voltage in the range of 180.4mV to 1674.60mV. ANSYS 10 simulation shows that the optimum voltage will be generated at resonance frequency of approximately 204Hz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-144

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Blazevic and S. Zelenika, Characterisation of Vibration Energy Harvester,. Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium, Volume 20, No. 1, ISSN 1726-9679 ISBN 978-3-901509-70-4, Editor B. B. Katalinic, Publish hed by DAAAM International, Vienna, Austria, EU, (2009).

DOI: 10.2507/31st.daaam.proceedings.

Google Scholar

[2] K. Insung, J. Hyeonkyu, J. Soonjong, K. Minsoo and S. Jaesung, Applications of Self Power Device Using Piezoelectric Triple-Morph Cantilever for Energy Harvesting, Ferroelectrics, 409: 100–107, (2010).

DOI: 10.1080/00150193.2010.485958

Google Scholar

[3] S. Roundy, P.K. Wright and J. Rabaey, A study of low level vibrations as a source for wireless sensor nodes, Computer Communications. Vol: 26, pp.1131-1144, ISSN: 0140-3664.

DOI: 10.1016/s0140-3664(02)00248-7

Google Scholar

[4] S. C. Stanton, C. C. McGehee and B. P. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting, Applied Physics Letter. 95, 174103.

DOI: 10.1063/1.3253710

Google Scholar

[5] L. Gammaitoni, I. Neri and H. Vocca, Nonlinear oscillators for vibration energy harvesting, Applied Physics Letter 94, 164102.

DOI: 10.1063/1.3120279

Google Scholar

[6] A. Erturk, J. Hoffmann and D. J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting, Applied Physics Letter 94, 254102.

DOI: 10.1063/1.3159815

Google Scholar

[7] D. A. W. Barton, S. G. Burrow, and L. R. Clare, Energy Harvesting From Vibrations With a Nonlinear Oscillator, Journal of Vibration and Acoustic 132, 021009.

Google Scholar

[8] S. Kobayashi, M. Hayakawa, Y. Okuma, I. Shimokawa, M. Shida, S. Yamashita, N. Koshizuka, and K. Sakamura, Low Power Wireless Sensor Network Platform for Ubiquitous Computing, First International Workshop on Networked Sensing Systems. (2004).

Google Scholar

[9] H. M. Kim, J. S. Ahn, K. H. Lee, and K. B. Lee, Optimized ferroelectric PZT films deposited on various transparent conducting oxides for ferroelectric transparent thin-film transistors, J. Korean Phys. Soc. 50, 1740–1744 (2007).

DOI: 10.3938/jkps.50.1740

Google Scholar

[10] A. F. Arrieta, P. Hagedorn , A. Erturk, and D. J. Inman, A piezoelectric bistable plate for nonlinear broadband energy harvesting, Applied Physics Letters 97, 104102 (2010).

DOI: 10.1063/1.3487780

Google Scholar

[11] G. Xiaotong, S. Wei-Heng, and Y. S. Wan, Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths, Applied Physics Letters 97, 233503 (2010).

DOI: 10.1063/1.3521389

Google Scholar

[12] K. Soon-Duck, A T-shaped piezoelectric cantilever for fluid energy harvesting, Applied Physics Letters 97, 164102 (2010).

DOI: 10.1063/1.3503609

Google Scholar

[13] W. Sheng, H. L. Kwok, L. S. Cheng, W. K. Kin, L. W. C. Helen, S. G. Ming and Z. Xing-Zhong, Energy harvesting with piezoelectric drum transducer. Applied Physics Letters 90, 113506 (2007).

Google Scholar

[14] E. M. Seung, Q L. Sung, un L. Sang-ky, L. Young-Gi, S. Y. Yil, P. Kang-Ho, and K. Jongdae, Sustainable Vibration Energy Harvesting Based on Zr-Doped PMN-PT Piezoelectric Single Crystal Cantilevers, ETRI Journal, Volume 31, Number 6, December (2009).

DOI: 10.4218/etrij.09.1209.0015

Google Scholar

[15] J. Soon-Jong, K. Min-Soo, L. Dae-Su, and S. Jae-Sung, Properties of a Multi-Stack Type Piezoelectric Energy Harvesting Device, Integrated Ferroelectrics, 98: 208–215, (2008).

DOI: 10.1080/10584580802096507

Google Scholar

[16] J. Kan, J. Qiu, K. Tang, K. Zhu and C. Shao, Modeling and simulation of piezoelectric composite diaphragms for energy harvesting, International Journal of Applied Electromagnetics and Mechanics 30 (2009).

Google Scholar

[17] C. Hyonho, J. Seongsu, P. Taegone, K. Myongho, S. Taekwon and S. Yeonsoo, Characteristics of the Piezoelectric Generator Using Circular Type Bender, Ferroelectrics, 408: 103–111, (2010).

Google Scholar

[18] D. Shuxiang, Z. Junyi, J. F. Li, D. Viehland, and S. Priya, Multimodal system for harvesting magnetic and mechanical energy, Applied Physics Letters 93, 103511 (2008), DOI: 10. 1063/1. 2982099.

DOI: 10.1063/1.2982099

Google Scholar