[1]
G. Knothe Analytical Methods Used in the Production and Fuel Quality Assessment of Biodiesel, Transaction of the American Society of Agricultural Engineers. 44 (2001) 193-200.
Google Scholar
[2]
M. Canakci and H. Sanli, Biodiesel production from various feedstock and their effects on the fuel properties, Journal of Industrial Microbiology Technology. 35 (2008) 431-441.
DOI: 10.1007/s10295-008-0337-6
Google Scholar
[3]
A.K. Agarwal, S. Sinha, and S. Garg, Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization, Energy Conversion and Management. 49 (2008) 1248-1257.
DOI: 10.1016/j.enconman.2007.08.010
Google Scholar
[4]
A. Demirbas, Biodiesel production from vegetable oils by supercritical methanol, Journal of Scientific and Industrial Research. 64 (2005) 858-865.
Google Scholar
[5]
P.S. Bisen and B.S. Sanodiya, Biodiesel production with special emphasis on lipase-catalyzed transesterification, Biotechnology Letters. 32 (2010) 1019–1030.
DOI: 10.1007/s10529-010-0275-z
Google Scholar
[6]
A. Ghaly, D. Dave, M. Brooks and S. Budge, Production of Biodiesel by Enzymatic Transesterification, Review: American Journal of Biochemistry and Biotechnology. 6 (2010) 54-76.
DOI: 10.3844/ajbbsp.2010.54.76
Google Scholar
[7]
Y. Liu, Y. Yan, F. Hu, A. Yao, Z. Wang and F. Wei, Transesterification for Biodiesel Production Catalyzed by Combined Lipases, Optimization and Kinetics, AIChE Journal. 56 (2010b) 1659–1665.
DOI: 10.1002/aic.12090
Google Scholar
[8]
G. Kumar, D. Kumar, S. Singh, S. Kothari, S. Bhatt and C. Singh, Continuous Low Cost Transesterification Process for the Production of Coconut Biodiesel, Energies. 3 (2010) 43-56.
DOI: 10.3390/en3010043
Google Scholar
[9]
S.P. Singh and D. Singh, Biodiesel Production through the use of different sources and Characterization of oils and their esters as the substitute of diesel, A review. Renewable and Sustainable Energy Reviews. 14. (2010)200-216.
DOI: 10.1016/j.rser.2009.07.017
Google Scholar
[10]
P. Bondioli and D. B. Laura, An alternative spectrophotometric method for the determination of free glycerol in biodiesel, European Journal of Lipid Technology. 107 (2005) 153-157.
DOI: 10.1002/ejlt.200401054
Google Scholar
[11]
G. Knothe, Monitoring a Progressing Transesterification Reaction by Fiber-Optic Near Infrared Spectroscopy with Correlation to 1H Nuclear Magnetic Resonance, Spectroscopy. 77 (2000) 489–493.
DOI: 10.1007/s11746-000-0078-5
Google Scholar
[12]
G. Knothe, Analytical Methods for Biodiesel, AOCS Press. (2005) 62-75.
Google Scholar
[13]
B.C. Plank, M. Lechner and L. Eberhard, Determination of acylglycerols in vegetable oil methyl esters by on-line normal phase LC-GC, Journal of High Resolution Chromatography. 20 (1997) 581-585.
DOI: 10.1002/jhrc.1240201103
Google Scholar
[14]
H.D. Isengard and M. Hein, Determination of underivated fatty acids by HPLC, Z Lebensm Unters Forsch A. 204 (1997) 420-424.
DOI: 10.1007/s002170050105
Google Scholar
[15]
M. Mittelbatch (1996), Diesel Fuel Derived from Vegetable Oils, VI: Specifications and Quality Control of Biodiesel: Bioresource Technology. 56 (1996) 7-11.
DOI: 10.1016/0960-8524(95)00172-7
Google Scholar
[16]
T. A. Foglia, K. C Jones, A. Nunez, J. G. Phillips and M. Mittelbach, Comparison of Chromatographic Methods for the Determination of Bound Glycerol in Biodiesel, Chromatographia. 60 (2004) 305-311.
DOI: 10.1365/s10337-004-0372-z
Google Scholar
[17]
R. W. Heiden, Analytical Methodologies for the Determination of Biodiesel Ester Purity Determination of Total Methyl Esters: Final NBB Report Lancaster, CONTRACT #: 520320-l 27th February, (1996).
Google Scholar
[18]
A. Okullo, A.K. Temu, P. Ogwok and J.W. Ntalikwa, Physico-Chemical Properties of Biodiesel from Jatropha and Castor oils, International Journal of Renewable Energy Research. 2 (2012) 379-384.
DOI: 10.4028/www.scientific.net/amr.824.436
Google Scholar
[19]
B. Freedman, E. H. Pryde and T.L. Mounts, Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils: JAOCS 61 (1984) 1638-1643.
DOI: 10.1007/bf02541649
Google Scholar
[20]
C. Plank and E. Lorbeer, Simultaneous determination of glycerol, and mono-, di- and triglycerides in vegetable oil methyl esters by capillary gas chromatography, Journal of Chromatography A. 697 (1995) 461-468.
DOI: 10.1016/0021-9673(94)00867-9
Google Scholar
[21]
C. Ortwin, M. Mittelbatch, S. Schober, J. Fisher and J. Haupt, Improvements needed for the biodiesel standard EN14214, Final Report for Lot 1 BIOScope. EC Project TREN/D2/44-LOT 1/S07. 54676. (2008).
Google Scholar
[22]
European Standard EN 14105, Fat and Oil derivatives-Fatty Acid Methyl Esters (FAME). Determination of free and total glycerol and mono-, di-, triglyceride contents, European Committee for Standardization. Ref. No. EN14105 (2011).
DOI: 10.3403/30207064
Google Scholar
[23]
European Biodiesel Board, EBB European Biodiesel Quality Report (EBBQR). Results of the nineth round of tests. Winter 2010/2011 Results. Boulevard Saint Michel, 34-1040 Bruxelles.
Google Scholar
[24]
C. Stavarache, M. Vinatoru, R. Nishimura and Y. Maeda, Fatty acids methyl esters from vegetable oil by means of ultrasonic energy, Ultrasonics Sonochemistry. 12 (2005) 367-372.
DOI: 10.1016/j.ultsonch.2004.04.001
Google Scholar
[25]
N. Lima da Silva, B. Benedito, M.F. Rubens and R.W. Maria, Biodiesel Production from Castor Oil: Optimization of Alkaline Ethanolysis, Energy Fuels. 23 (2009) 5636-5642.
DOI: 10.1021/ef900403j
Google Scholar
[26]
L. Canoira, J.G. García, A. Ramón, L. Magín and G.C. Reyes, Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties, Renewable Energy. 35 (2009) 208-217.
DOI: 10.1016/j.renene.2009.05.006
Google Scholar