Modelling the Transport and Dispersion of Atmospheric Aerosols over Warri Area of the Niger Delta Subregion of Nigeria

Article Preview

Abstract:

This study investigates the transport profile and source-sink system for atmospheric aerosols over Warri area of the Niger Delta subregion of Nigeria. The study utilized GPS information of the study locations to simulate meteorological variables over the area from the Air Resource Laboratory (ARL) website. The ARL/GFS model was used to determine the wind-field information between 1st and 8th March 2012 over sub region. In addition backward air mass trajectories were determined at various heights of 5m, 1000m and 2000m AGL for aerosol transport pattern, as well as concentration dispersion using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. During the study period, aerosols were noticed to evolve from the sea of the Atlantic Ocean, hence are likely of sea salt origin. Winds over the sub region ranged between 4 and 6 m/s and predominantly in the south and south westerly directions. The maximum pollutant concentration observed was about 1.0 x 10-12 μg/m3 while the minimum was about 1.5 x 10-24 μg/m3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-649

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. I. Abam, G. O. Unachukwu, Vehicular Emissions and Air Quality Standards in Nigeria, European Journal of Scientific Research, 34(4), (2009) 550 – 560.

Google Scholar

[2] C. D. O'Dowd, M. H. Smith, I. E. Consterdine, J. A. Lowe, Marine Aerosol, Sea Salt, and the Marine Sulphur Cycle: A Short Review, Atmospheric Environment, 31(1), (1997) 33 – 80.

DOI: 10.1016/s1352-2310(96)00106-9

Google Scholar

[3] S. Syed, Atmospheric Corrosion of Materials, Emirate Journal for Engineering Research, 11(1), (2006) 1 – 24.

Google Scholar

[4] J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley Interscience, New York, (2006).

Google Scholar

[5] A.I. Igbafe, Resolving the Atmospheric Sulphur Budget over the Mpumalanga Highveld, PhD Thesis, University of the Witwatersrand, Johannesburg, (2007).

Google Scholar

[6] G. D. Djolov, D. L. Yordanov, D. E. Syrakov, Modelling Long-range Transport of Air Pollutants with Atmospheric Boundary Layer Chemistry, Boundary Layer Meteorology, 41, (1987) 407 – 416.

DOI: 10.1007/bf00120454

Google Scholar

[7] G. Held, H. Scheifinger, G. M. Synman, G. R. Tosen, M. Zunckel, The Climatology and Meteorology of the Highveld, In: Air Pollution and its Impacts on the South African Highveld (Eds: G. Held, B. J. Gore, A. D. Surridge, G. R. Tosen, C. R. Turner and R. D. Walmsley), Environmental Scientific Association, Cleveland, South Africa, (1996).

DOI: 10.1016/s1352-2310(97)00217-3

Google Scholar

[8] D. A. Lundgren, Atmospheric Aerosol Composition and Concentration as a Function of Particle Size and of Time, Journal of Air Pollution Control Association, 20, (1970) 603 – 608.

DOI: 10.1080/00022470.1970.10469449

Google Scholar

[9] M. Hallquist, D. J. Stewart, S. K. Stephenson, R. A. Cox, Hydrolysis of N2O5 on Submicron Sulfate Aerosols, Physical Chemistry Chemical Physics, 5(16), (2003) 3453 – 3463.

DOI: 10.1039/b301827j

Google Scholar

[10] K. von Salzen, K. H. Schlünzen, A Prognostic Physico-chemical Model of Secondary and Marine Inorganic Multicomponent Aerosols: I. Model Description, Atmospheric Environment, 33, (1999) 567 – 576.

DOI: 10.1016/s1352-2310(98)00282-9

Google Scholar

[11] S. L. Gong, L. A. Barrie, J. –P. Blanchet, Modeling sea salt aerosols in the atmosphere, Journal of Geophysical Research, 102(D3), (1997) 3805 – 3818.

DOI: 10.1029/96jd02953

Google Scholar

[12] A. Stohl, Computation Accuracy and Applications of Trajectories – A Review and Bibliography, Atmospheric Environment, 32, (1998) 947 – 966.

DOI: 10.1016/s1352-2310(97)00457-3

Google Scholar

[13] F. Pasquill, Atmospheric Diffusion, 2nd Edition, John Wiley and Sons, New York, (1974).

Google Scholar

[14] S. N. Pandis, R. A. Harley, G. R. Cass, J. H. Seinfeld, Secondary Organic Aerosol Formation and Transport, Atmospheric Environment, 26A(13), (1992) 2269 – 2282.

DOI: 10.1016/0960-1686(92)90358-r

Google Scholar

[15] J. S. Scire, D. G. Strimaitis, R. J. Yamartino, A User's Guide for the CALPUFF Dipsersion Model (Version 5), Earth Tech. Inc., U.S. A, 2000. http: /www. src. com/verio/download/download. htm, [Website accessed date: 20-04-2011].

Google Scholar

[16] EPA, User's Guide for the Industrial Source (ISC3) Dispersion Model, Vol. 1, User instructions, EPA-454/B-95-003a, U.S. Environmental Protection Agency [NTIS PB95-222741], (1995).

Google Scholar

[17] R. Villasenor, C. Claiborn, B. Lamb, S. O'Neil, Mesoscale Modelling of Wintertime Particulate Matter Episodes in Eastern Washington, USA, Atmospheric Environment, 35(36), (2001) 6479 – 6491.

DOI: 10.1016/s1352-2310(01)00428-9

Google Scholar

[18] G. A. Briggs, Plume Rise, U.S. Atomic Energy Commission Division of Technical Information Pub., Tennessee, U.S. A, (1969).

Google Scholar

[19] G. E. Gordon, Receptor Models, Environmental Science and Technology, 14, (1980) 792 – 800.

Google Scholar

[20] A. Oyem, A. I. Igbafe, Analysis of Atmospheric Aerosol Loading over Nigeria, Environmental Research Journal, 4(1), (2010) 145 – 156.

DOI: 10.3923/erj.2010.145.156

Google Scholar

[21] www. arl. noaa. gov. ready, [Website accessed date: 20-04-2011], (2011).

Google Scholar