[1]
E. Heinzel, S. Hedrich, E. Janneck, F. Glombitza, J. Seifert, M. Schlömann. Bacterial diversity in a mine water treatment plant, Appl. Environ. Microbiol. 75 (2009) 858–861.
DOI: 10.1128/aem.01045-08
Google Scholar
[2]
E. Heinzel, E. Janneck, F. Glomibtza, M. Schlömann, J. Seifert. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters, Environ. Sci. Technol. 43 (2009) 6138-6144.
DOI: 10.1021/es900067d
Google Scholar
[3]
K. B. Hallberg, K. Coupland, S. Kimura, D. B. Johnson. Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities, Appl. Environ. Microbiol. 72 (2006) 2022–(2030).
DOI: 10.1128/aem.72.3.2022-2030.2006
Google Scholar
[4]
G. L. Tan, W. S. Shu, W. H. Zhou, X. L. Li, C. Y. Lan, L. N. Huang. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site, FEMS Microbiol. Ecol. 70 (2009).
DOI: 10.1111/j.1574-6941.2009.00744.x
Google Scholar
[5]
K. B. Hallberg. New perspectives in acid mine drainage microbiology, Hydrometallurgy, 104 (2010) 448–453.
DOI: 10.1016/j.hydromet.2009.12.013
Google Scholar
[6]
O. F. Rowe, D. B. Johnson. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors, Syst. Appl. Microbiol. 31 (2008) 68–77.
DOI: 10.1016/j.syapm.2007.09.001
Google Scholar
[7]
S. Hedrich, E. Heinzel, J. Seifert, M. Schlömann. Isolation of novel iron-oxidizing bacteria from an acid mine water treatment plant, Adv. Mat. Res. 71-73 (2009) 125–128.
DOI: 10.4028/www.scientific.net/amr.71-73.125
Google Scholar
[8]
D. B. Johnson, S. McGinness. A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria, J. Microbiol. Methods 13 (1991) 113–122.
DOI: 10.1016/0167-7012(91)90011-e
Google Scholar
[9]
D. B. Johnson, K. B. Hallberg, Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms, in: D. E. Rawlings, D. B. Johnson (Eds. ), Biomining, Springer-Verlag. Heidelberg 2007, p.237–261.
DOI: 10.1007/978-3-540-34911-2_12
Google Scholar
[10]
J. Kipry, R. J. Jwair, N. Gelhaar, C. Wiacek, E. Janneck, M. Schlömann. Enrichment of Ferrovum, spp. and Gallionella relatives using artificial mine water, IBS (2013).
DOI: 10.4028/www.scientific.net/amr.825.54
Google Scholar
[11]
S. Hedrich, Isolation of novel iron-oxidizing bacteria and their application in mine water remediation, Dissertation, TU Bergakademie Freiberg (2011).
Google Scholar
[12]
S. Mosler, A. Poehlein, S. Voget, R. Daniel, J. Kipry, M. Schlömann, M. Mühling. Predicting the metabolic potential of the novel iron oxidising bacterium Ferrovum, sp. JA12 using comparative genomics, IBS (2013).
DOI: 10.4028/www.scientific.net/amr.825.153
Google Scholar
[13]
M. Seeger, C. A. Jerez. Response of Thiobacillus ferrooxidans to phosphate limitation, FEMS Microbiol. Rev. 11 (1993) 37–42.
DOI: 10.1111/j.1574-6976.1993.tb00264.x
Google Scholar