Predicting the Metabolic Potential of the Novel Iron Oxidising Bacterium "Ferrovum" sp. JA12 Using Comparative Genomics

Article Preview

Abstract:

Here we describe the potential uptake and assimilation pathways for the essential nutrients C, N, P, and S in the acidophilic iron oxidiser Ferrovum strain JA12, a member of a novel genus among the Betaproteobacteria. Comparative genomics proved to be a powerful approach to give first insights into the biochemical potential of this novel genus and to understand the reasons for the dominating abundance of Ferrovum spp. in a pilot plant to remediate acid mine drainage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-156

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Heinzel, S. Hedrich, K.E. Janneck, F. Glombitza, J. Seifert, M. Schlömann, Bacterial siversity in a mine water treatment plant, Appl. Environ. Microbiol. 75 (2009a) 858-861.

DOI: 10.1128/aem.01045-08

Google Scholar

[2] E. Heinzel, K.E. Janneck, F. Glombitza, M. Schlömann, J. Seifert, Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters, Environ. Sci. Technol. 43 (2009b) 6138-6144.

DOI: 10.1021/es900067d

Google Scholar

[3] S. Kimura, C.G. Bryan, K.B. Hallberg, D.B. Johnson, Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol. 13 (2011) 2092–2104.

DOI: 10.1111/j.1462-2920.2011.02434.x

Google Scholar

[4] J.F. Brown, D.S. Jones, D.B. Mills, J.L. Macalady, W.D. Burgos, Application of a depositional faciesmodel to an acid mine drainage site, Appl. Environ. Microbiol. 77 (2011) 545-554.

DOI: 10.1128/aem.01550-10

Google Scholar

[5] S. Brockmann, T. Arnold, B. Schweder, G. Bernhard, Visualizing acidophilic microorganisms in biofilm communities using acid stable fluorescence dyes, J. Fluoresc. 20 (2010) 943-951.

DOI: 10.1007/s10895-010-0640-2

Google Scholar

[6] E. Gonzalez-Toril, A. Aguilera, V. Souza-Egipsy, E. Lopez Pamo, J. Sanchez Espana, R. Amils, Geomicrobiology of La Zarza-Perrunalacid mine effluent (Iberian Pyritic Belt, Spain), Appl. Environ. Microbiol. 77 (2011) 2685-2694.

DOI: 10.1128/aem.02459-10

Google Scholar

[7] K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10 (1993) 512-526.

DOI: 10.1093/oxfordjournals.molbev.a040023

Google Scholar

[8] J.P. Cárdenas, J. Valdés, R. Quatrini, F. Duarte, D.S. Holmes, Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms, Appl. Microbiol. Biotechnol. 88 (2010) 605-620.

DOI: 10.1007/s00253-010-2795-9

Google Scholar

[9] V. Bonnefoy, D.S. Holmes, Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments, Environ. Microbiol. 14 (2011) 1597-1611.

DOI: 10.1111/j.1462-2920.2011.02626.x

Google Scholar

[10] R. Quatrini, C. Appia-Ayme, Y. Denis, E. Jedlicki, D.S. Holmes, V. Bonnefoy, Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans, BMC Genomics 10 (2009) 394-413.

DOI: 10.1186/1471-2164-10-394

Google Scholar