[1]
R.K. Thauer. (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson., Microbiology 144: 2377-2406.
DOI: 10.1099/00221287-144-9-2377
Google Scholar
[2]
R. Hedderich, N. Hamann, M. Bennati. (2005) Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster., Biol Chem 386: 961-970.
DOI: 10.1515/bc.2005.112
Google Scholar
[3]
D.P. Kelly, A.P. Wood. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov., Int. J. Syst. Evol. Microbiol. (2000) 50: 511-516.
DOI: 10.1099/00207713-50-2-511
Google Scholar
[4]
C. Dahl, A. Engels, A. Pott, J. Schulte, Y. Sander, O. Lübbe, O. Deuster, D.C. Brune. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. , J. Bacteriol. (2005).
DOI: 10.1128/jb.187.4.1392-1404.2005
Google Scholar
[5]
A. Chi, L. Valenzuela, S. Beard, A.J. Mackey, J. Shabanowitz, D.F. Hunt, C.A. Jerez. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis., Mol Cell Proteomics (2007) 6: 2239-2251.
DOI: 10.1074/mcp.m700042-mcp200
Google Scholar
[6]
R. Quatrini, C. Appia-Ayme, Y. Denis, E. Jedlicki, D. S. Holmes, V. Bonnefoy. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans., BMC Genomic. (2009) 10: 394-412.
DOI: 10.1186/1471-2164-10-394
Google Scholar
[7]
C.Q. Choong Syn, W.L. Teo, S. Swarup. Three-detergent method for the extraction of RNA from several bacteria., BioTechniques (1999) 27: 1140-1145.
DOI: 10.2144/99276bm11
Google Scholar
[8]
G.K. Smyth. In Gentleman, R., Carey, V., R., Huber, W., (eds). Limma: Linear Models for Microarray Data., New York Springer, (2005), pp.397-420.
Google Scholar
[9]
G.K. Smyth, T. Speed. Normalization of cDNA microarray data., Methods (2003) 31: 265-273.
DOI: 10.1016/s1046-2023(03)00155-5
Google Scholar
[10]
J. Aubert, A. Bar-Hen, J.J. Daudin, S. Robin. Determination of the differentially expressed genes in microarray experiments using local FDR., BMC Bioinformatics. (2004) 5: 125-133.
DOI: 10.1186/1471-2105-6-42
Google Scholar
[11]
S. Wakai, M. Kikumoto, T. Kanao, K. Kamimura. Involvement of sulfide: quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1., Biosci. Biotechnol. Biochem. (2004).
DOI: 10.1271/bbb.68.2519
Google Scholar
[12]
A. Yarzábal, C. Appia-Ayme, J. Ratouchniak, V. Bonnefoy. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin, Microbiology (2004) 150: 2113-2123.
DOI: 10.1099/mic.0.26966-0
Google Scholar
[13]
G. Levicán, J.A. Ugalde, N. Ehrenfeld, A. Maass, P. Parada. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations., BMC Genomics (2008) 9: 581-599.
DOI: 10.1186/1471-2164-9-581
Google Scholar
[14]
S. Mangold, J. Valdés, DS. Holmes, M. Dopson. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus., Front Microbiol. (2011) 2: 1–18.
DOI: 10.3389/fmicb.2011.00017
Google Scholar
[15]
L. Chen, Y Ren, J Lin, X Liu, X Pang, et al. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant., (2012) PLoS ONE 7(9): e39470.
DOI: 10.1371/journal.pone.0039470
Google Scholar