Heterodisulfide Reductase from Acidithiobacilli is a Key Component Involved in Metabolism of Reduced Inorganic Sulfur Compounds

Article Preview

Abstract:

Heterodisulfide reductase (Hdr), is an iron-sulfur protein which in anaerobic methanogenic archaea catalyzes the reduction of the disulphide bond between coenzyme M and coenzyme B and is coupled to methane formation. In aerobic acidophilic chemolithotrophic bacteria (e.g., biomining bacteria) the function of this enzyme is unclear. Inspection of the genomic sequences of Acidithiobacillus ferrooxidans DSM 16786 and Acidithiobacillus thiooxidans DSM 17318 and reverse transcriptase-PCR results revealed a cluster of six co-transcribed genes, hdrC1, hdrB1, hdrA, orf1, hdrC2 and hdrB2, encoding proteins with high similarity to catalytic Hdr subunits. Additionally, microarray expression profiling and quantitative RT-PCR experiments demonstrated that the hdr genes of A. ferrooxidans and A. thiooxidans were highly expressed when bacteria are grown in the presence of sulfur and tetrathionate. Moreover, hdr genes in A. ferrooxidans were greatly up-regulated when this microorganism was grown in sulfur compared to ferrous medium. These results strongly support a role for Hdr in oxidative metabolism of reduced sulfur compounds in aerobic chemolithotrophic bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-197

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.K. Thauer. (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson., Microbiology 144: 2377-2406.

DOI: 10.1099/00221287-144-9-2377

Google Scholar

[2] R. Hedderich, N. Hamann, M. Bennati. (2005) Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster., Biol Chem 386: 961-970.

DOI: 10.1515/bc.2005.112

Google Scholar

[3] D.P. Kelly, A.P. Wood. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov., Int. J. Syst. Evol. Microbiol. (2000) 50: 511-516.

DOI: 10.1099/00207713-50-2-511

Google Scholar

[4] C. Dahl, A. Engels, A. Pott, J. Schulte, Y. Sander, O. Lübbe, O. Deuster, D.C. Brune. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. , J. Bacteriol. (2005).

DOI: 10.1128/jb.187.4.1392-1404.2005

Google Scholar

[5] A. Chi, L. Valenzuela, S. Beard, A.J. Mackey, J. Shabanowitz, D.F. Hunt, C.A. Jerez. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis., Mol Cell Proteomics (2007) 6: 2239-2251.

DOI: 10.1074/mcp.m700042-mcp200

Google Scholar

[6] R. Quatrini, C. Appia-Ayme, Y. Denis, E. Jedlicki, D. S. Holmes, V. Bonnefoy. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans., BMC Genomic. (2009) 10: 394-412.

DOI: 10.1186/1471-2164-10-394

Google Scholar

[7] C.Q. Choong Syn, W.L. Teo, S. Swarup. Three-detergent method for the extraction of RNA from several bacteria., BioTechniques (1999) 27: 1140-1145.

DOI: 10.2144/99276bm11

Google Scholar

[8] G.K. Smyth. In Gentleman, R., Carey, V., R., Huber, W., (eds). Limma: Linear Models for Microarray Data., New York Springer, (2005), pp.397-420.

Google Scholar

[9] G.K. Smyth, T. Speed. Normalization of cDNA microarray data., Methods (2003) 31: 265-273.

DOI: 10.1016/s1046-2023(03)00155-5

Google Scholar

[10] J. Aubert, A. Bar-Hen, J.J. Daudin, S. Robin. Determination of the differentially expressed genes in microarray experiments using local FDR., BMC Bioinformatics. (2004) 5: 125-133.

DOI: 10.1186/1471-2105-6-42

Google Scholar

[11] S. Wakai, M. Kikumoto, T. Kanao, K. Kamimura. Involvement of sulfide: quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1., Biosci. Biotechnol. Biochem. (2004).

DOI: 10.1271/bbb.68.2519

Google Scholar

[12] A. Yarzábal, C. Appia-Ayme, J. Ratouchniak, V. Bonnefoy. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin, Microbiology (2004) 150: 2113-2123.

DOI: 10.1099/mic.0.26966-0

Google Scholar

[13] G. Levicán, J.A. Ugalde, N. Ehrenfeld, A. Maass, P. Parada. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations., BMC Genomics (2008) 9: 581-599.

DOI: 10.1186/1471-2164-9-581

Google Scholar

[14] S. Mangold, J. Valdés, DS. Holmes, M. Dopson. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus., Front Microbiol. (2011) 2: 1–18.

DOI: 10.3389/fmicb.2011.00017

Google Scholar

[15] L. Chen, Y Ren, J Lin, X Liu, X Pang, et al. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant., (2012) PLoS ONE 7(9): e39470.

DOI: 10.1371/journal.pone.0039470

Google Scholar