Conductive Filaments Produced by Aeromonas hydrophila

Article Preview

Abstract:

Aeromonas hydrophila is a facultative anaerobe which, under conditions of oxygen depletion, is able to respire iron (III). Scanning electron microscopy (SEM) and conducting-probe atomic force microscopy (AFM) revealed the presence of filaments between cells and cell-substrate and their conductive nature. These results indicate that the pili of A. hydrophila might serve as biological nanowires, transferring electrons from the cell to the surface of Fe (III) oxides. Conductive pili could also play a role in bacterial interactions and in inter/intra species signalling, and could lead to biotechnological approaches for novel materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-213

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.R. Lovley, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiological Reviews. 55 (1991) 259-287.

DOI: 10.1128/mr.55.2.259-287.1991

Google Scholar

[2] Y.S. Luu, J.A. Ramsay, Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source, World Journal of Microbiology and Biotechnology. 19 (2003) 215-225.

Google Scholar

[3] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Extracellular electron transfer via microbial nanowires, Nature 435 (2005) 1098-1101.

DOI: 10.1038/nature03661

Google Scholar

[4] Y.A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson, J.K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences. 103 (2006).

DOI: 10.1073/pnas.0604517103

Google Scholar

[5] C. García-Balboa, I. Chion, F. Gonzále, M.L. Blázquez, J.A. Muñoz, A. Ballester, Bio-reduction of Fe(III) ores using three pure strains of Aeromonas hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural consortium, Bioresource Technology. 101 (2010).

DOI: 10.1016/j.biortech.2010.05.015

Google Scholar

[6] C. Pfeffer, S. Larsen, J. Song, M. Dong, F. Besenbacher, R. L. Meyer, K.U. Kjeldsen, L. Schreiber, Y.A. Gorby, M.Y. El-Naggar, K.M. Leung, A. Schramm, N. Risgaard-Petersen, L.P. Nielsen, Filamentous bacteria transport electrons over centimetre distances, Nature, 491 (2012).

DOI: 10.1038/nature11586

Google Scholar

[7] Z.M. Summers, H.E. Fogarty, C. Leang, A.E. Franks, N.S. Malvankar, D.R. Lovley, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria, Science. 330 (2010) 1413-1415.

DOI: 10.1126/science.1196526

Google Scholar

[8] C.I. Torres, A.K. Marcus, H. -S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B.E. Rittmann, A kinetic perspective on extracellular electron transfer by anode-respiring bacteria FEMS Microbiology Reviews, 34 (2010) 3-17.

DOI: 10.1111/j.1574-6976.2009.00191.x

Google Scholar

[9] G. Reguera, K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, D.R. Lovley, Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells, Applied and Environmental Microbiology, 72 (2006) 7345-7348.

DOI: 10.1128/aem.01444-06

Google Scholar