Copper Recovery by Bioleaching of Chalcopyrite: A Microcalorimetric Approach for the Fast Determination of Bioleaching Activity

Article Preview

Abstract:

Low grade copper ores containing chalcopyrite are increasingly used for copper recovery via biomining. Since metal sulfide oxidation is an exothememic process, bioleaching activity can be measured due to the heat output by microcalorimetry, which is a non-destructive and non-invasive method. The bioleaching activity of pure cultures of Sulfolobus metallicus, Metallosphaera hakonensis and a moderate thermophilic enrichment culture on high grade chalcopyrite was evaluated. Chalcopyrite leaching by microorganisms showed a higher copper recovery than sterile controls. Chemical chalcopyrite leaching by acid produced heat due to the exothermic reaction, the heat output was increased while metal sulfide oxidation by microorganisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-325

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Schippers, A. Hedrich, S. Vasters, J. Drobe, M. Sand, W. Willscher, S., Biomining – metal recovery from ores with microorganisms, in: A. Schippers, F. Glombitza, W. Sand (Eds. ), Geobiotechnology, Advances in Biochemical Engineering/Biotechnology, Springer, in press.

DOI: 10.1007/10_2013_216

Google Scholar

[2] Leahy, M.J., Schwarz, M.P., Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns, Hydrom. 98 (2009) 181-191.

DOI: 10.1016/j.hydromet.2009.04.017

Google Scholar

[3] Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W., Bioleaching review part A: Progress in bioleaching: fundamentals and meachanisms of bacterial metal sulphide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.

DOI: 10.1007/s00253-003-1448-7

Google Scholar

[4] Stott, M.B., Watling, H.R., Franzmann, P.D., Sutton, D., The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching, Miner. Engin. 13 (2000) 1117-1127.

DOI: 10.1016/s0892-6875(00)00095-9

Google Scholar

[5] Dopson, M., Lindström, E.B., Potential role of Thiobacillus caldus in arsenopyrite bioleaching, Appl. Environ. Microbiol. 65 (1999) 36-40.

DOI: 10.1128/aem.65.1.36-40.1999

Google Scholar

[6] Schröter, A.W., Sand, W., Estimation on the degradability of ores and bacterial leaching activity using short-time microcalorimetric test, FEMS Microbiol. Rev. 11 (1993) 79-86.

DOI: 10.1111/j.1574-6976.1993.tb00270.x

Google Scholar

[7] Schippers, A., Hallmann, R., Wentzien, S., Sand, W., Microbial diversity in uranium mine waste heaps, Appl. Environ. Microbiol. 61 (1995) 2930-2935.

DOI: 10.1128/aem.61.8.2930-2935.1995

Google Scholar

[8] Rohwerder, T., Schippers, A. Sand, W., Determination of reaction energy values for biological pyrite oxidation by calorimetry, Thermochim. Acta 309 (1998) 79-85.

DOI: 10.1016/s0040-6031(97)00352-3

Google Scholar

[9] Mackintosh, M.E., Nitrogen fixation of Thiobacillus ferrooxidans, J. Gen. Microbiol. 105 (1978) 215-218.

DOI: 10.1099/00221287-105-2-215

Google Scholar

[10] Schippers, A., Jozsa, P.G., Sand, W., Sulfur chemistry in bacterial leaching, App. Environ. Microbiol. 62 (1996) 3424-3431.

DOI: 10.1128/aem.62.9.3424-3431.1996

Google Scholar

[11] Dutrizac, J.E., The kinetic of dissolution of chalcopyrite in ferric ion media, Metall. Trans. B9 (1978) 431-439.

DOI: 10.1007/bf02654418

Google Scholar