[1]
Watling, H. R., The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometallurgy 2006, 84, (1-2), 81-108.
DOI: 10.1016/j.hydromet.2006.05.001
Google Scholar
[2]
Córdoba, E. M.; Muñoz, J. A.; Blázquez, M. L.; González, F.; Ballester, A., Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy 2008, 93, (3-4), 81-87.
DOI: 10.1016/j.hydromet.2008.04.015
Google Scholar
[3]
Dutrizac, J. E.; MacDonald, R. J. C., Ferric iron as a leaching medium. Minerals. Science and Engineering 1974, 6, 59–100.
Google Scholar
[4]
Muñoz, P. B.; Miller, J. D.; Wadsworth, M. E., Reaction mechanisms for the acid ferric sulfate leaching of chalcopyrite. Metallurgical Transactions B 1979, 10B, 149–158.
DOI: 10.1007/bf02652458
Google Scholar
[5]
Kametani, H.; Aoki, A., Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution. . Metallurgical Transactions B 1985, 16B, 695–705.
DOI: 10.1007/bf02667506
Google Scholar
[6]
Hiroyoshi, N.; Miki, H.; Hirajima, T.; Tsunekawa, M., Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy 2001, 60, (3), 185-197.
DOI: 10.1016/s0304-386x(00)00155-9
Google Scholar
[7]
Hiroyoshi, N.; Kuroiwa, S.; Miki, H.; Tsunekawa, M.; Hirajima, T., Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 2007, 87, (1-2), 1-10.
DOI: 10.1016/j.hydromet.2006.07.006
Google Scholar
[8]
Leahy, M. J.; Schwarz, M. P., Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns. Hydrometallurgy 2009, 98, (1-2), 181-191.
DOI: 10.1016/j.hydromet.2009.04.017
Google Scholar
[9]
Kinnunen, P. H. M.; Puhakka, J. A., High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm. Process Biochemistry 2005, 40, (11), 3536-3541.
DOI: 10.1016/j.procbio.2005.03.050
Google Scholar
[10]
Plumb, J. J.; Muddle, R.; Franzmann, P. D., Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms. Minerals Engineering 2008, 21, 76-82.
DOI: 10.1016/j.mineng.2007.08.018
Google Scholar
[11]
Mousavi, S. M.; Yaghmaei, S.; Vossoughi, M.; Roostaazad, R.; Jafari, A.; Ebrahimi, M.; Habibollahnia Chabok, O.; Turunen, I., The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresource Technology 2008, 99, 2840-2845.
DOI: 10.1016/j.biortech.2007.06.009
Google Scholar
[12]
Halinen, A. -K.; Rahunen, N.; Kaksonen, A. H.; Puhakka, J. A., Heap bioleaching of a complex sulfide ore: Part I: Effect of pH on metal extraction and microbial composition in pH controlled columns. Hydrometallurgy 2009a, 98, (1-2), 92-100.
DOI: 10.1016/j.hydromet.2009.04.005
Google Scholar
[13]
Dopson, M.; Halinen, A. -K.; Rahunen, N.; Boström, D.; Sundkvist, J. -E.; Riekkola-Vanhanen, M.; Kaksonen, A. H.; Puhakka, J. A., Silicate mineral dissolution during heap bioleaching. Biotechnology and Bioengineering 2008, 99, (4), 811-820.
DOI: 10.1002/bit.21628
Google Scholar
[14]
Acero, P.; Cama, J.; Ayora, C.; Asta, M. P., Chalcopyrite dissolution rate law from pH 1 to 3. Geologica Acta 2009, 7, (3), 389-397.
Google Scholar
[15]
Brierley, J. A.; Kuhn, M. C., Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy 2010, 104, 410–413.
DOI: 10.1016/j.hydromet.2010.01.013
Google Scholar
[16]
Sicupira, L.; Veloso, T.; Reis, F.; Leão, V., Assessing metal recovery from low-grade copper ores containing fluoride. Hydrometallurgy 2011, 109, (3-4), 202-210.
DOI: 10.1016/j.hydromet.2011.07.003
Google Scholar
[17]
Córdoba, E. M.; Muñoz, J. A.; Blázquez, M. L.; González, F.; Ballester, A., Passivation of chalcopyrite during its chemical leaching with ferric ion at 68°C. Minerals Engineering 2009, 22, (3), 229-235.
DOI: 10.1016/j.mineng.2008.07.004
Google Scholar
[18]
Hackl, R. P.; Dreisinger, D. B.; Peters, E.; King, J. A., Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 1995, 39, (1-3), 25-48.
DOI: 10.1016/0304-386x(95)00023-a
Google Scholar
[19]
Peacey, J.; Guo, J. X.; Robles, E., Copper Hydrometallurgy-current status, Preliminary Economics, Future direction and positioning versus smelting. Transactions of Nonferrous Metals Society of China 2004, 14, (3), 560 - 568.
Google Scholar