Minimum Aeration in Acidithiobacillus ferrooxidans Cultures Required to Maintain Substrate Oxidation without Oxygen Limitation

Article Preview

Abstract:

The volumetric oxygen transfer coefficient (kLa) was used to define the conditions necessary for minimum aeration and to eliminate potential oxygen limitation in bioleaching cultures of Acidithiobacillus ferrooxidans. The Michaelis constants for oxygen were 1.07 and 0.71 μmol O2 l-1 for the oxidation of ferrous iron and elemental sulphur, respectively. The critical oxygen concentration, below which oxygen limitation occurred, was determined to be 6.25 and 3.125 μmol O2 l-1 for the oxidation of ferrous iron and elemental sulphur, respectively. The (kLa)crit values required to maintain oxygen-unlimited substrate oxidation for ferrous iron and elemental sulphur were 7.70 and 4.88 h-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

414-417

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M. Doran, Bioprocess Engineering Principles, Academic Press, London, (1995).

Google Scholar

[2] H.J. Noorman, Mass transfer, in: C. Ratledge, B. Kristiansen (Eds. ), Basic Biotechnology, third ed., Cambridge University Press, Cambridge, 2006, pp.201-217.

Google Scholar

[3] D.B. Johnson, The biogeochemistry of biomining, in: L.L. Barton, M. Mandl, A. Loy (Eds. ), Geomicrobiology: Molecular and Environmental Perspective, Springer, Dordrecht, 2010, pp.401-426.

DOI: 10.1007/978-90-481-9204-5_19

Google Scholar

[4] M. Dopson, D.B. Johnson, Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms, Environ. Microbiol. 14 (2012) 2620-2631.

DOI: 10.1111/j.1462-2920.2012.02749.x

Google Scholar

[5] J. Kucera, J. Zeman, M. Mandl, H. Cerna, Stoichiometry of bacterial anaerobic oxidation of elemental sulfur by ferric iron, Antonie van Leeuwenhoek 101 (2012) 919-922.

DOI: 10.1007/s10482-012-9699-x

Google Scholar

[6] E. Pakostova, M. Mandl, B.O. Pokorna, E. Diviskova, A. Lojek, Cellular ATP changes in Acidithiobacillus ferrooxidans cultures oxidizing ferrous iron and elemental sulfur, Geomicrobiol. J. 30 (2013) 1-7.

DOI: 10.1080/01490451.2011.636790

Google Scholar

[7] M. Mandl, Growth and respiration kinetics of Thiobacillus ferrooxidans limited by CO2 and O2, Biologia 39 (1984) 429-434.

Google Scholar

[8] P. Ceskova, M. Mandl M., S. Helanova, J. Kasparovska, Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans: Sulfur limitation and activity of free and adsorbed bacteria, Biotechnol. Bioeng. 78 (2002) 24-30.

DOI: 10.1002/bit.10172

Google Scholar

[9] B. Pokorna, M. Mandl, S. Borilova, P. Ceskova, R. Markova, O. Janiczek, Kinetic constant variability in bacterial oxidation of elemental sulfur, Appl. Environ. Microbiol. 73 (2007) 3752-3754.

DOI: 10.1128/aem.02549-06

Google Scholar