Staphylococcus equorum Isolated from Seabed as Potential Biotool to Cr(VI) Remediation

Article Preview

Abstract:

Normal 0 21 false false false ES-CL X-NONE X-NONE MicrosoftInternetExplorer4 Cr(VI) is frequently used in several industrial activities, due to its uncontrolled spill this contaminant has generated serious damage to the environment: chromium hexavalent has a high oxidation potential and is able to go through biological membranes. As consequence Cr(VI)is described as a persistent contaminant with a high toxicity. It has been searched for alternative methods to remediate or detoxify environments contaminated with Cr(VI). The use of microorganisms able to absorb or reduce this type of contaminant is discerned as a potential biotool for remediation of metals-enriched industrial wastes. In order to isolate and identify environmental microorganisms with this capacity, we isolated a bacterium named LMA-2 with a selective pressure of 60 mM of Cr(VI) from contaminated marine sediment. In the morphologic analysis, this marine microorganism evidenced that corresponds to a Gram-positive cocci. This resistant bacterium has a minimal inhibitory concentration for Cr(VI) of 750 mM. The characterization and identification of this strain was made through 16S ribosomal RNA gene, this result revealed that it corresponds to Staphylococcus equorum. Assays using atomic absorption spectrophotometer (AAS) shows that this strain is able to ireduce the concentration of soluble Cr(VI) The capacity of this strain to remediate Cr(VI) was determined in 142.8 mg/L at 10 h of exposition. Our results showed the high resistance and the ability for Cr(VI) remediation by Staphylococcus equorum. These results suggest that this marine bacterium could be a prospect for future use as a biofilter for seabed marine environment decontamination. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-527

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Barnhart, Occurrences, uses and properties of chromium, Regul. Toxicol. Pharmacology. 26 (1997) S3–S7.

DOI: 10.1006/rtph.1997.1132

Google Scholar

[2] C. Cervantes J. Campos-Garcia, Reduction and efflux of chromate by bacteria. In: Molecular Microbiology of HeavyMetals, Springer-Verlag, Berlin. (2007) Vol 37: 407- 420 pp.

Google Scholar

[3] Environmental Protection Agency (EPA), Treatment Technologies for site cleanup: annual status report, 11 th edition, (2004).

Google Scholar

[4] S. Sultan, S. Hasnain, Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals, Bioresour. Technol. 98 (2007) 340–344.

DOI: 10.1016/j.biortech.2005.12.025

Google Scholar

[5] C. González, Cuantificación de Metales Pesados en Mytilus chilensis y Sedimentos Asociados a Actividades Industriales en el Canal Tenglo, Puerto Montt. Tesis, Ingeniería en Medio Ambiente y Manejo Costero. Universidad de los Lagos, Puerto Montt, (2007).

DOI: 10.7764/tesisuc/arq/64816

Google Scholar

[6] T. Hauschild, S. Stepanović, Identification of Staphylococcus sp. by PCR-Restriction Fragment Length Polymorphism Analysis of dnaJ Gene. J. Clin Microb. (2008) 3875.

DOI: 10.1128/jcm.00810-08

Google Scholar

[7] K. Lee, D., Bai, Y. Smith, D. Han and H.S. Supanjani. Isolation of Plant-Growth-Promoting Endophytic Bacteria from Bean Nodules. Journal of Agriculture and Biological Sciences. Canada. (2005) 232-236 pp.

Google Scholar

[8] T. Hauschild and S. Stepanović. Identification of Staphylococcus sp. by PCR-Restriction Fragment Length Polymorphism Analysis of dnaJ Gene. Journal of Clinical Microbiology. (2008). 3875 pp.

DOI: 10.1128/jcm.00810-08

Google Scholar

[9] K. Mistry, C. Desai, S. Lal, K. Patel, B. Patel, Hexavalent Chromium Reduction by Staphylococcus Sp. Isolated From Cr (VI) Contaminated Land Fill, Biotechnology and Biochemistry, (2010) Vol 6: 117-129.

Google Scholar

[10] C. Ramesh, M. Seidu, B. Michael, M. Mallavarapu, N. Ravi, Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites, Soil Biology & Biochemistry, India. 42 (2010) 1857-1863.

DOI: 10.1016/j.soilbio.2010.07.005

Google Scholar

[11] A. Díaz-Magaña, E. Aguilar-Barajas, R. Moreno-Sánchez, M. I. Ramírez-Díaz, H. Riveros-Rosas, E. Vargas, C. Cervantes, Short-Chain Chromate Ion Transporter Proteins from Bacillus subtilis Confer Chromate Resistance in Escherichia coli. J Bacteriol. 191 (2009).

DOI: 10.1128/jb.00625-09

Google Scholar

[12] A. Rajbanshi. Study on Heavy Metal Resistant Bacteria in Guheswori Sewage Treatment Plant. J. Our Nature. Nepal. (2008) 6: 52-57.

DOI: 10.3126/on.v6i1.1655

Google Scholar

[13] G. Gadd. Fungi and yeast for metal accumulation. In: Microbial Mineral Recovery, Ed. H. Ehrlich & C. L. Briely. McGraw-Hill, New York, (1990) 249-245.

Google Scholar