[1]
E. Heinzel, S. Hedrich, E. Janneck, F. Glombitza, J. Seifert, M. Schlömann. Bacterial diversity in a mine water treatment plant. Appl. Environ. Microbiol. 75 (2009) 858-861.
DOI: 10.1128/aem.01045-08
Google Scholar
[2]
K. B. Hallberg, K. Coupland, S. Kimura, D. B. Johnson. Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72 (2006) 2022-(2030).
DOI: 10.1128/aem.72.3.2022-2030.2006
Google Scholar
[3]
S. Kimura, C. G. Bryan, K. B. Hallberg, D. B. Johnson. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ. Microbiol. 13 (2011) 2092-2104.
DOI: 10.1111/j.1462-2920.2011.02434.x
Google Scholar
[4]
S. Hedrich, E. Heinzel, J. Seifert, M. Schlömann. Isolation of novel iron-oxidizing bacteria from an acid mine water treatment plant. Adv. Mat. Res. 2009, 71-73, 125-128.
DOI: 10.4028/www.scientific.net/amr.71-73.125
Google Scholar
[5]
D. Lovley, E. Phillips. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53 (1987) 1536-1540.
DOI: 10.1128/aem.53.7.1536-1540.1987
Google Scholar
[6]
E. Viollier, P. Inglett, K. Hunter, A. Roychoudhury, P. van Cappellen. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15 (2000) 785-790.
DOI: 10.1016/s0883-2927(99)00097-9
Google Scholar
[7]
E. Heinzel, E. Janneck, F. Glombitza, M. Schlömann, J. Seifert. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ. Sci. Technol. 43 (2009) 6138-6144.
DOI: 10.1021/es900067d
Google Scholar
[8]
D. B. Johnson, S. McGinness. A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria. J. Microbiol. Methods 13 (1991) 113-122.
DOI: 10.1016/0167-7012(91)90011-e
Google Scholar
[9]
D. B. Johnson, K. B. Hallberg. Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms, in: D. E. Rawlings, D. B. Johnson (Eds. ), Biomining, Springer-Verlag, Heidelberg, 2007, 237-261.
DOI: 10.1007/978-3-540-34911-2_12
Google Scholar
[10]
J.S. Kipry, R.J. Jwair, N. Gelhaar, C. Wiacek, E. Janneck, M. Schlömann (2013) New cultivation medium for Ferrovum, and Gallionella-related strains. J. Microbiol. Methods. under revision.
DOI: 10.1016/j.mimet.2013.07.027
Google Scholar
[11]
N. Okibe, M. Gericke, K. B. Hallberg, D. B. Johnson. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl. Environ. Microbiol. 69 (2003) 1936-(1943).
DOI: 10.1128/aem.69.4.1936-1943.2003
Google Scholar
[12]
D. Lane, 16S/23S rRNA sequencing, in: E. M. G Stackebrandt, M. Goodfellow (Eds. ) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, U. K, 1991, 115-175.
Google Scholar
[13]
J. Marchesi, T. Sato, A. Weightman, T. Martin, A. Fry, S. Hiom. Design and evalution of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64 (1998) 795-799.
DOI: 10.1128/aem.64.2.795-799.1998
Google Scholar
[14]
B. Escobar, K. Bustos, G. Morales, O. Salazar. Rapid and specific detection of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans by PCR. Hydrometallurgy 92 (2008) 102-106.
DOI: 10.1016/j.hydromet.2008.01.012
Google Scholar
[15]
P. de Wulf-Durand, L. J. Bryant, L. I. Sly. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 63 (1997) 2944-2948.
DOI: 10.1128/aem.63.7.2944-2948.1997
Google Scholar