[1]
E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, T. Mori. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel[J]. Applied Physics A, 2002, 74: 1143-1145.
DOI: 10.1007/s003390201555
Google Scholar
[2]
Jin Hwan Chung, Jong Bae Jeon, Young Won Chang. Work-hardening and ductility enhancement mechanism of cold rolled multiphase TRIP steels[J]. Metals and Materials International, 2010, Vol. 16, No. 4: 533-541.
DOI: 10.1007/s12540-010-0803-3
Google Scholar
[3]
J. Danzeisen, M. Merklein, K. Roll. Investigation of fracture behaviour in TRIP steels[J]. International Journal of Material Forming, 2008, Suppl 1: 221-224.
DOI: 10.1007/s12289-008-0364-x
Google Scholar
[4]
Lin Li, Yi Gao, NaQiong Zhu, YanLin He, RenDong Liu. Technology for high performance TRIP steel[J]. Science China Technological Sciences, 2012, Vol. 55 No. 7: 1823-1826.
DOI: 10.1007/s11431-012-4872-z
Google Scholar
[5]
Bleck W. Using the TRIP effect-The dawn of a promising group of cold formable steels[J]. In Proceedings of the International Conference on TRIP-Added High Strength Ferrous Alloys (Ghent, Belgium), 2002. 13-24.
DOI: 10.1002/srin.200200198
Google Scholar
[6]
Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite[J]. ISIJ Int, 1991, 31(9): 992-1000.
DOI: 10.2355/isijinternational.31.992
Google Scholar
[7]
Tanaka Y, Shimizu K. Variation of martensite morphology with manganese and carbon compositions in fe-mn-c alloys[J]. Trans JIM, 1980, 21: 34–41.
DOI: 10.2320/matertrans1960.21.34
Google Scholar
[8]
Lung T, Drillet J, Couturier A, et al. Detailed study of the transformation mechanisms in ferrous TRIP aided steels[J]. In Proceedings of the International Conference on TRIP-added high strength ferrous alloys (Ghent, Belgium), 2002. 31-38.
DOI: 10.1002/srin.200200200
Google Scholar
[9]
T. Iwasaki, N. Sasaki, N. Chiba, Y. Abe. Molecular dynamics study of shear and tensile deformation of bicrystalline aluminum[J]. Computational Mechanics, 1995, 16: 69-73.
DOI: 10.1007/bf00365860
Google Scholar
[10]
K. Kadau, P. S. Lomdahl, B. L. Holian. Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum[J]. Metallurgical and Materials Transactions A, 2004, Vol. 35A: 2719-2723.
DOI: 10.1007/s11661-004-0217-2
Google Scholar
[11]
Chang-Ju Kim, Rhett Mayor, Jun Ni. Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge[J]. International Journal of Precision Enginee, 2012, Vol. 13, No. 8: 1303-1309.
DOI: 10.1007/s12541-012-0173-5
Google Scholar
[12]
Chan Il Kim, Seung Han Yang, Young Suk Kim. Deformation characteristics of various grain boundary angles on AFM-based nanolithography using molecular dynamics[J]. Journal of Mechanical Science and Technology, 2012, Vol. 26: 1841-1847.
DOI: 10.1007/s12206-012-0428-1
Google Scholar
[13]
Young-suk Kim, Jun-young Park. Molecular dynamics simulation for microfracture behavior of material[J]. KSME International Journal, 1998, Vol. 12, No. 3: 388-395.
DOI: 10.1007/bf02946353
Google Scholar
[14]
Jijun Lao, Mehdi Naghdi Tam, Dinesh Pinisetty, Nikhil Gupta. Molecular Dynamics Simulation of FCC Metallic Nanowires: A Review[J]. JOM, 2013, Vol. 65, No. 2: 175-184.
DOI: 10.1007/s11837-012-0465-3
Google Scholar
[15]
S. J. Zhou, D. M. Beazley, P. S. Lomdahl. Large-scale molecular dynamics simulations of fracture and deformation[J]. Journal of Computer-Aided Materials Design, 1996, 3: 183-186.
DOI: 10.1007/bf01185653
Google Scholar
[16]
D. J. Hepburn and G.J. Ackland, Metallic-covalent interatomic potential for carbon in iron, Phys. Rev. B 78, (2008).
DOI: 10.1103/physrevb.78.165115
Google Scholar