p.33
p.45
p.55
p.65
p.73
p.81
p.93
p.117
p.123
Copper Refining Electrolyte and Slime Processing - Emerging Techniques
Abstract:
Copper electro-refining (Cu-ER) is the principal method for producing >70% of high or 99.97% pure copper cathodes from 97-99% pure blister/fire refined-scrap copper anodes. While the inert and most of less soluble impurities settle as anode slime/sludge, other soluble impurities, particularly the metalloids (group VA/15 elements or Q: As, Sb and Bi) and some transition metals (Mt) co-dissolved with Cu(II). Since the soluble impurities build up in the copper refining electrolyte (CRE) which need monitoring and control to prevent contamination of the cathodes and passivation of the anodes before bleeding for spent CRE reprocessing. There is a high demand for pure electrorefined copper and electrolyte additives are added to the CRE to prevent nodulation or control the chemical and physical properties of copper cathodes. Various hydrometallurgical methods such as precipitation, adsorption, electro-dialysis, electro-winning, ion exchange and solvent extraction have been developed with some success to control the CRE impurities. So some emerging technologies for improved monitoring and control of the metalloid impurities in CRE and slime as well as development of saleable byproduct recovery (As, Sb, Bi) are briefly reviewed with particular emphasis on the precipitation for the metalloid slime resource recycling and product development.
Info:
Periodical:
Pages:
93-115
Citation:
Online since:
November 2013
Authors:
Keywords:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] Habasi F., Copper, History & Metallurgy, Metallurgie Extractive Quebek, Quebek City (2009)
[2] Markovic R., J. Stevanovic, M. Gvozdenovic, B. Jugovic, A. Grujic, D. Nedeljkovic, J. Stajic-Trosic, Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes, Int. J. Electrochem. Sci., 8 (2013) pp.7357-7370
[3] ASTM B115 - 10 Standard Specification for Electrolytic Copper Cathode, 2010.
[4] Piret N.L., Optimizing bismuth control during copper production, JoM, 46 (10), 1994, pp.15-18.
DOI: 10.1007/bf03222600
[5] Mitevska N. and Z.D. Zivkovic, Thermodynamics of As, Sb and Bi distribution during reverb furnace smelting, J. Min. Met., 38 (1-2) B (2002) pp.93-102
DOI: 10.2298/jmmb0202093m
[6] Moats M.S., S. Wang, D. Kim, A review of the behavior and deportment of lead, bismuth, antimony and arsenic in copper electrorefining, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.3-122.
[7] Chen T.T., J.E. Dutrizac and S. Beauchemin, The deportment of arsenic in copper electrorefining circuits, Elelctrometallurgy, B. Hiskey and T. Robinson (Sec. eds.), Hydrometallurgy 2008: Proc. 6th Int. Symp. (Hon. R.S. Shemaker, Phonix, Arizona), C. Young, P.R. Taylor, C.G. Anderson, SME, 2008, pp.608-617.
[8] Nagamori M. and P.J. Mackey, Thermodynamics of copper matte converting: Part I. Fundamentals of the Noranda process, Met. Trans., 9B (2) (1978) pp.255-265; Thermodynamics of copper matte converting: Part II. Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process, Met. Trans., 9B (4) (1978) pp.567-579.
DOI: 10.1007/bf03257205
[9] Surapunt S., Computer Simulation of the Distribution Behavior of Minor Elements in the Copper Smelting Process, Thammasat Int. J. Sc. Tech., 9, 4, 2004, pp.61-68.
[10] Riveros G. and T.A. Utigard, Disposal of arsenic in copper discharge slags, J. Hazard. Mat., 77 (1) 2000, p.241−252.
[11] Petkova E.N., Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper, Hydromet., 46 (3) (1997), p.277–286
[12] Dutrizac J.E. and T.T. Chen, The role of hydrometallurgy in the recycling of zinc, copper and lead, Acta Met. Slovaca, (1) (1998), p.5–28
[13] Navarro P., J. Simpson, F.J. Alguacil, Removal of antimony(III) from copper in sulphuric acid solutions by solvent extraction with LIX 1104SM, Hydromet., 53 (2) 1999, p.121−131.
[14] Wang X-w., Q-y. Chen, Z-l. Yin, P-m. Zhang, Z-p. Long, Z-f. Su, Removal of impurities from copper electrolyte with adsorbent containing antimony, Hydromet., 69(1-3) 2003, p.39−44.
[15] Wang X-w., Q-y. Chen, Z-l. Yin, L-s. Xiao, Identification of arsenato antimonates in copper anode slimes, Hydromet., 84(3/4) 2006, p.211−217.
[16] Chen T.T. and J.E. Dutrizac, A Mineralogical Study of the Effect of the Lead Content of Copper Anodes on the Dissolution of Arsenic, Antimony and Bismuth During Copper Electrorefining, Can. Met. Q., 42, 4, 2003, pp.421-432.
[17] Chen T.T. and J. E. Dutrizac, Mineralogical characterization of a copper anode and the anode slimes from the La Caridad copper refinery of Mexicana de Cobre, Met. Mat. Trans. B, 36B (2) (2005) pp.229-240.
[18] Hyvarinen O.V.J., Process for selective removal of bismuth and antimony from an electrolyte, especially in electrolytic refining of copper, US Patent 4157946, June 12, 1979.
[19] Baltazar V., P.L. Claessens and J. Thiriar, Effect of arsenic and antimony in copper electrorefining, The Electrorefining and Winning of Copper, J.E. Hoffmann, R.G. Bautista, V.A. Ettel, V. Kudruk and R.J. Wesely, Met. Soc. AIME, Warrendale, PA, 1987, pp.211-222.
[20] Noguchi F., Y. Iida, T. Nakamura, Y. Ueda, Behaviour of Anode Impurities in Copper Electrorefining, Shigen-to-Sozai (Japan), 107, 8 (1991) pp.569-575 (in Japanese)
[21] Kamath B.P., A.K. Mitra, S. Radhakrishnan, K. Shetty, Electrolyte impurity control at Chinchpada refinery of Sterlite Industries (India) limited, Copper – 2003, vol. V: Copper Electrorefining Electrowinning, MetSoc. (2003), Electrorefining operations, p.137–150; eco-tec TP 167, Dec. 2003, 12 pp.
[22] Ahana S-C., S-M. Lee, Y-H. Kim, W-S. Chung, U-C. Chung, Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode, J. Korean Inst. Surf. Eng., 39, 5, 2006, pp.215-222
[23] Moller C.A., M. Bayanmunkh and B. Friedrich, Influence of As, Sb, Bi and O on copper anode behaviour – Part 3: Elemental distribution, Erzmetall., 62 (2) 2009, pp.70-80.
[24] Moller C.A., B. Friedrich and M. Bayanmunkh, Influence of As, Sb, Bi and O on copper anodes during electrorefining, Proc. Copper 2010, GDMB, Germany, pp.1495-1510.
[25] Wang X.W., Q.Y. Chen, Z.L. Yin, M.Y. Wang, B.R. Xiao, F. Zhang, Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining, Hydromet., 105 (3-4) (2011a), p.355–358
[26] Wang X.W., Q.Y. Chen, Z.L. Yin, M.Y. Wang, F. Tang, The role of arsenic in the homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte, Hydromet., 108 (3–4) (2011), p.199–204
[27] King M.G., J.S. Jackson, W.H. Heung, Process for the removal of bismuth from copper refining electrolyte by using lead oxide, US Patent 5133948, July 28, (1992)
[28] Baboudjian V.P. and J.S. Stafiej, Selective bismuth and antimony removal from copper electrolyte, US Patent 5573739, Nov. 12, (1996)
[29] Moats M.S. and J.B. Hiskey, The role of electrolyte additives on passivation behaviour during copper electrorefining, Can. Met. Q., 39, 3, 2000, pp.297-306
[30] Gupta C.K., Chemical Metallurgy Principles and Practice, Wiley-VCH Verlag GmbH, 2003/2006, Ch. 6. Electrochemistry, Sec. 9.1. Copper, pp.717-723
[31] Marković R., Friedrich B., Stevanović J., Jugović B., Gvozdenović M., Stajić-Trošić J., Jordović B., Removal of as from the sulphur acidic waste solution obtained in the electrolytic copper refining process, 14th Int. Res./Expert Conf. "Trends in the Development of Machinery and Associated Technology" TMT 2010, Mediterranean Cruise, 11-18 Sep. 2010a, pp.345-348.
[32] Dutrizac J.E. and T.T. Chen, Mineralogical characterization of anode slimes, Can. Met. Q., 27 (2) (1988), p.91–115
[33] Dutrizac J.E. and T.T. Chen, The behaviour of gold and silver during copper electrorefining, B. Harris (Ed.), Precious Metals 1989, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.425
[34] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of anode slime: Part V- Nickel rich copper amodes from the CCR division of Naranda Minerals Inc. Can. Met. Q., 29, 1, 1990b, pp.27-37.
[35] Cunnigham R.M., J.V. Calara, M.G. King, Removal of antimony and bismuth from copper electrolyte, B. Mishra (Ed.), Development of a Commercial Plant at Amarillo Copper Refinery. EPD Congress 1997, TMS, Warrendale, PA (1997), p.453–460
[36] Biswas, A.K. and W.G. Davenport, Extractive Metallurgy of Copper, British Library, 3rd ed., 1999, p.264–287.
[37] Larouche P., Minor elements in copper smelting and electrorefining, M.E. Thesis, Nov., 2001, McGill University, Montreal, Canada.
[38] Davenport W.G.L., M. King, M. Schlesinger, A.K. Biswas, Extractive Metallurgy of Copper, Pergamon, 4th Edn, 2002.
[39] Stelter M. and H. Bombach, Copper Electrorefining – State of Art and Perspectives, Erzmetal., 54, 9S, 2001, pp.432-438
[40] Stelter M. and Bombach H., Process optimization in copper electrorefining, Adv. Eng. Mat., 6, 7, 2004, pp.558-562.
[41] Jarjoura G. and G.J. Kipouros, Effect of nickel on copper anode passivation in a copper sulfate solution by impedance spectroscopy, J. Appl. Electrochem., 36 (2006a) pp.691-701.
[42] Jarjoura G. and G.J. Kipouros, Electrochemical Studies on the Effect of Nickel on Copper Sulphate Solution, Can. Met. Q., 45 (3) (2006b) pp.283-294
[43] Beauchemin S., T.T. Chen and J.E. Dutrizac, Behaviour of antimony and bismuth in copper electrorefining circuits, Can. Met. Q., 47, 1, 2008, pp.9-26
[44] Hermann C., Process for optimizing the process of copper electro-winning and electro-refining by superimposing a sinusoidal current over a continuous current, US Pattent Appln. 20110024301, Feb. 3, (2011)
[45] Leahy M.J. and M.P. Schwartz, Modeling Natural Convection in Copper Electrorefining: Describing Turbulence Behavior for Industrial-Sized Systems, Met. Mat. Trans. B, 42, 4, 2011, pp.875-890.
[46] Filzwieser A., I. Filzwieser, S. Konetschnik, Technology for Electrorefining of Copper, JoM, 64, 11, 2012, pp.1290-1295
[47] Wenzl C., I. Filzwieser, S. Konetschnik, METTOP-BRX technology – Industrial application, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.63-76.
[48] Andersen T.N., R.D. Budd, and R.W. Strachan, A Rapid Electrochemical Method for Measuring the Concentration of Active Glue in Copper Refinery Electrolyte Which Contains Thiourea, Met. Trans. B, 7B (3), 1976, p.333–338.
DOI: 10.1007/bf02652702
[49] O'Keefe T.J. and L.R. Hurst, The effect of antimony, chloride ion, and glue on copper electrorefining, J. Appl. Electrochem., 8, 2, 1978, pp.109-119.
DOI: 10.1007/bf00617669
[50] Mirkova L., N. Petkova, I. Popova, St. Rashkov, The effect of some surface active additives upon the quality of cathodic copper deposits during the electro-refining process, Hydromet., 36, 2, 1994, pp.201-213.
[51] Mirkova L. and St. Raskov, Anodic behaviour of copper during electrorefining using a rotating ring-disc electrode, J. Appl. Electrochem., 24, 5, 1994, pp.420-425
DOI: 10.1007/bf00254154
[52] Veilleux, B. Lafront, A.-M. Ghali, E., Effect of Thiourea on Nodulation During Copper Electrorefining Using Scaled Industrial Cells, Can. Met. Q., 40, 3, 2001, pp.343-354
[53] Zheng Z., Fundamental studies of the anodic behaviour of thiourea in copper electrorefining, Ph.D. Thesis, Mar. 2001, Univ. British Columbia
[54] Veilleux B. Lafront A-M., Ghali E., Roberge P.R., The use of electrochemical noise measurements to detect bad copper electrorefining conditions, J. Appl. Electrochem., 33, 11, 2003, pp, 1093-1098
[55] Ilkhchi M.O., H. Yoozbashizadeh, M.S. Safarzadeh, The effect of additives on anode passivation in electrorefining of copper, Chem. Eng. Process: Process Intensific., 46, 8. 2007, pp.757-763.
[56] Safizadeh F., A.M. Lafront, E. Ghali, G. Haulachi, Monitoring the influence of gelatin and thiourea on copper electrodeposition employing electrochemical noise technique, Can. Met. Q., 49, 1, 2010, pp.21-18
[57] Safizadeh F. and E. Ghali, E. Monitoring passivation of Cu-Sb and Cu-Pb anodes during electrorefining employing electrochemical noise analyses, Electrochim, Acta, 56, 1, 2010, pp.93-101.
[58] Muhlare T.A. and Groot D.R., The effect of electrolyte additives on cathode surface quality during copper electrorefining, J. South African Inst. Min. Met., 111, 2011, pp.371-378.
[59] Schlesinger M.E., M.J. King, K.C. Sole and W.G. Davenport, Extractive Metallurgy of Copper, Elsevier, 5th Edn., 2011, Ch. 14. Electrolytic Refining, pp.251-280
[60] Fabian C.P. and T.W. Lancaster, Process for cooper electrowinning and electrorefining, US Patent 8293093 B2, Oct. 23, (2012)
[61] Safizadeh F., A.M. Lafront, E. Ghali, G. Haulachi, An investigation of the influence of selenium on copper deposition during electrorefining using electrochemical noise analysis, Hydromet., 111-112, 2012, p.29–34
[62] EFS, 2013: Electrolyte Filtration System, TFI Filteration (India) Pvt. Ltd., Ahamedabad, Gujrat, http://www.thefiltrationindia.com/electrolyte_a.html
[63] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of a copper anode and the anode slimes from the La Caridad Copper Refiner of Mexicana de Cobre. Met. Mat. Trans., B, Proc. Metall. Mater. Proc. Sci. 36B (2), 2005, p.229–240.
[64] Wenzl C., A. Filzweiser, H. Antrekowitsch, Review of anode casting - part I: Chemical Anode Quality, Erzmetall, 60 (2) (2007), pp.71-82; Review of anode casting - part II: physical anode quality, Erzmetall, 60 (2) (2007), pp.83-88.
[65] Wenzl C., I. Filzwieser, G. Mori, J. Pesl, Investigations on Anode Quality in Copper Electrorefining, BHM, 153, 3, 2008, pp.91-96.
[66] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of anode slimes: Part 7 – copper anodes and anode slimes from the Chuquicamata division of Codelco-Chile, Can. Met. Q., 30, 2, 1991a, pp.95-106
[67] Ling X., Gu Z.H., Fahidi T.Z., Anode slime behaviour in a laboratory-scale copper electrorefining process, Can. J. Chem. Eng., 72, 4, 1994, pp.683-694.
[68] Ling X., Z.H. Gu, T.Z. Fahidy, Effect of operating conditions on anode passivation in the electrorefining of copper, J. Appl. Electrochem., 24 (11) (1994) pp.1109-1115.
DOI: 10.1007/bf00241308
[69] Fernandez M.A., M. Segarra, F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydromet., 41, 2-3, 1996, p.255–267
[70] Hait J., R.K. Jana, S.K. Sanyal, Mineralogical Characteristics of Copper Electrorefining Anode Slime and Its Leached Residues, Ind. Eng. Chem. Res., 43 (9) 2004, p.2079–2087.
DOI: 10.1021/ie0305465
[71] Hait J., R.K. Jana, S.K. Sanyal, Processing of copper electrorefining anode slime: a review, Min. Process Extr. Met. Rev., 118, 4, 2009, pp.240-252
[72] Tomingas N., Analysis of Copper Refinery Electrolyte by a Condensed D.C. Arc Solution Technique, Appl. Spec., 14, 3, (1960) pp.72-73
[73] Xiao F-X., D. Cao, J-W. Mao, Determination of arsenic and antimony in copper electrolyte by hydrogen peroxide pretreatment-continuous titration method, Met. Anal., 32(3) 2012, pp.64-69 (Chinese with Engl. Abs.)
[74] Braun, T.B., J.R. Rawling, K.J. Richards, Factors affecting the quality of electrorefining cathode copper. In: Yannopoulos, J.C., Agrwal, J.C. (Eds.), Extractive Metallurgy of Copper, vol. I, The Metallurgical Society, Inc., New York, AIME, Las Vegas, 1976, Ch. 25-Electrorefing of Copper, p.511–524.
[75] Petkova E.N., Microscopic examination of copper electrorefining slimes, Hydromet., 24, 3, 1990, p.351–359
[76] Petkova E.N., Hypothesis about the origin of copper electrorefining slime, Hydromet, 34, 3, 1994, p.343–358
[77] Mirkova L., N. Petkova, I. Popova, St. Rashkov, The effect of some surface active additives upon the quality of cathodic copper deposits during the electro-refining process, Hydromet., 36, 2, 1994, pp.201-213.
[78] Ando K. and M. Sugimoto, Impurity Deposition on Starting Sheet in Copper Electrorefining, J. Mining Mat. Process. Inst. Japan, 117, 11, 2011, pp.885-890 (Japnese)
[79] Abe S., B.W. Burrows, V.A. Ettel, Anode Passivation in Copper Refining, Can. Met. Q., 19 (3) 1980, pp.289-296.
[80] Noguchi F., T. Nakamura, Y. Ueda, Behaviour of anode impurities in copper electrorefining. Effect of bismuth, arsenic, antimony and oxygen in copper anode, Shigen-to-Sozai,105, 4, (1989) pp.321-327 (Japanese)
[81] Hoffmann J.E., The purification of copper refinery electrolyte, JOM, 56 (7) (2004), p.30–33.
[82] Wang S., Impurity control and removal in copper tankhouse operations, JoM, 55 (7), 2004, pp.34-37.
[83] Chen T.T. and J.E. Dutrizac, Characterisation of the liberator cells sludges from three copper electrorefineries, Can. Met. Q., 48, 1, 2009, pp.61-68
[84] Navarro L., T. Morris and W. Read, Copper Refining Electrolyte Purification by the Use of Molecular Recognition Technology (MRT) for Bismuth Removal, T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), The Wiley/TMS, 2012, pp.141-150.
[85] Abe S., Y. Takasawa, Prevention of floating slimes precipitation in copper electrorefining, J.E. Hoffmann, R.G. Bautista, V.A. Ettel, V. Kudryk, R.J. Wesely (Eds.), TMS-AIME, The Electrorefining and Winning of Copper, Denver, Colorado, USA (1987), p.87–98
[86] Backstrom J., Copper, Nickel and Tellurium yields during leaching of anode slimes, Master Thesis, June 27, 2010, Lulea Univ. Technol.
[87] Mastyugin S.A. and S.S. Naboichenko, Processing of copper-electrolyte slimes: Evolution of technology, Russ. J. Non-ferrous Met., 53, 5, 2012, pp.367-374
[88] Marković R., B. Friedrich, J. Stevanović, B. Jugović, M. Gvozdenović, J. Stajić-Trošić, B. Jordović, Removal of as from the sulphur acidic waste solution obtained in the electrolytic copper refining process, 14th Int. Research/Expert Conf. "Trends in the Development of Machinery and Associated Technology" TMT 2010, Mediterranean Cruise, 11-18 Sep. 2010, pp.345-348.
[89] Chen T.T. and J.E. Dutrizac, A Mineralogical Study of the Deportment of Impurities during the Electrorefining of Secondary Copper Anodes, Proc. Copper 99 – Cobre 99, Vol. III – Electrorefining and Electrowining of Copper, J.E. Dutrizac, J. Ji, and V. Ramachandran (eds), TMS, Warrandale, PA (1999) pp.437-460.
DOI: 10.1007/bf02696987
[90] Stafiej J.S., P. Claessens and C.W. Whilte, Tellurium extraction from copper refining slimes, US Patent 5939042, Aug. 17, 1999.
[91] Anderson C.G., Hydrometallurgical Treatment of Antimony Bearing Industrial Wastes, JoM, 53, 1, 2001, pp.18-20
[92] Sobral L.G.S. and G.N. Bard, Extraction of gold, silver and copper from the copper electrorefining anode slime: separation of the metals, Contribuição Técnica elaborada para o REWAS 2008 realizado em Cancun – México 12 à 15 de outubro de 2008, CT2008-067-00
[93] Lottering C., J.J. Eksteent, N. Steenekamp, Precipitation of rhodium from a copper sulphate leach solution in the selenium/tellurium removal section of a base metal refinery, J. S. African Inst. Min. Met., 112 (2012) pp.287-294.
[94] Kilic Y. and S. Timur, Dissolution of copper and selenium from copper anode slimes, Proc. Euro. Met. Conf., EMC 2011, June 26-29, Dusseldrof, Germany, Vol. I, (2011) pp.57-70
[95] Scott J.D., Electrometallurgy of copper refinery anode slimes, Met. Trans. B, 21B (4) (1990), p.629–635
DOI: 10.1007/bf02654241
[96] Rao G.S., Y.W. Gokhale, S.S. Gupta, Recovery of selenium and tellurium from anode slimes, Ind. J. Technol., 4 (1976), p.201–203
[97] Hoffmann J.E., Recovering selenium and tellurium from copper refinery slimes, JoM, 41 (7) (1989), p.33–38
DOI: 10.1007/bf03220269
[98] Valenzuela A., K. Fytas'y, M. Sánchez, Arsenic Management in Copper Smelters, Oct. 7, 2001. http://relevanx.com/web/guest/technology-articles/article/-/article/N2ze/21607/-1/746/arsenic-management-in-copper-smelters
[99] Lin D.Q., K.Q. Qiu, Removing arsenic from anode slime by vacuum dynamic evaporation and vacuum dynamic flash reduction, Vacuum, 86 (8) (2012), p.1155–1160
[100] Cooper W.C., The treatment of copper refinery anode slimes, JoM, 42, 8, 1990, pp.45-49
DOI: 10.1007/bf03221054
[101] Amer A.M., Processing of copper anode-slimes for extraction of metal values, Fizykochem. Probl. Mineralurgii /Physicochem. Probl. Min. Process., 36 (2002) pp.123-134
[102] Tougarinoff B., F. Van Goetsennhoven, A. Dewulf, Recovery by nitric acid cicle of gold and platinum metals from the anode slimes arising from the electrolysis of doré metal, Advances in Extractive Metallurgy, Inst. of Mining and Metallurgy, London (1968), p.741–758
[103] Morrison B.H., The evolution of copper refinery slime processing and precious metal treatment at CCR Division — Noranda Minerals, B. Harris (Ed.), Precious Metals, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.403–413
DOI: 10.3403/30423080
[104] Hyvärinen O., E. Rosenberg, L. Lindroos, Selenium and precious metals recovery from copper anode slimes at Outokumpu Pori Refinery, D.A. Kudry, N. Corrigan, W.W. Liang (Eds.), Precious Metals: Mining, Extraction and Processing, TMS-AIME, Warrendale, Pa (1984), p.537–548
[105] Lenz J.G., J. Pageau, Treatment of copper anode slimes in a top blown rotary converter, G. Vermeylen, R. Verbeeck (Eds.), Precious Metals 1987, Int. Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1987), p.529–542
[106] Lessard B., Anode slimes treatment in a top blown rotary converter at the CCR Division of Noranda Minerals Inc, B. Harris (Ed.), Precious Metals, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.427–440
[107] Singh N., S.B. Mathur, Sulphatisation studies on copper anode slimes, Trans. Indian Inst. Met., 29 (6) (1976), p.407–412
[108] Morris T.T., L.G. Navarro, Autoclave Pressure Oxygen Leaching Of Anodic Copper Slimes, T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 2012, TMS Ann. Meet. Exhibit., pp.91-100
[109] Bard G.N. and L.G.S. Sorbal, Extraction of gold, silver and copper from the copper electrorefining anode slime: separation of the metals, Golobal Symp. Recycling, Waste Treat. Clean Tech., REWAS 2008, Cuncun. Mexico, Oct 12-15, 2008, B. Mishra, C. Ludwig and S. Das (eds), TMS, pp.141-148.
[110] Anderson C.G., The metallurgy of antimony, Chemie der Erde – Geochem., 72, S4, (2012) p.3–8.
[111] Anderson C. G., S.M. Nordwick, L.E. Krys, Antimony Separation Process, U.S. Patent 5,290,338, Mar. 1, 1994.
[112] Noguchi F., M. Yano, T. Nakamura, Y. Ueda, Form of Sb Dissolved into Electrolyte during Copper Electrorefining, Shigen-to-Sozai (Japan),109, 2 (1993) pp.121-125 (in Japanese)
[113] Wang, X.W., Study on the mechanism of the formation and action of arsenato antimonic acid in copper electrorefining. Ph.D. Thesis, 2003, Central South University, Changsha (in Chinese).
[114] Peng Y.-L. , Zheng Y.-J. , Chen W.-M., The oxidation of arsenic from As(III) to As(V) during copper electrorefining, Hydromet., 129-130, (2012) pp.156-160.
[115] Peng Y.-L., Y.-J. Zheng, W.-M. Chen, Separation and recovery of Cu and As during purification of copper electrolyte, Trans. Non-Ferrous Met. Soc., 22, 9, 2012, p.2268–2273
[116] Palmer B.R., F. Nami, M.C. Fuerstenau, Reduction of arsenic acid with aqueous sulfur dioxide, Metall. Trans. B, 7 (3) (1976), p.385–390
DOI: 10.1007/bf02652709
[117] Lindstrom R., Elimination of floating slimes during electrorefining of copper, US Patent 3753877, Aug 21/7, 1973a; Lindstrom R., Elimination of floating slimes during electrorefining of copper, US Patent 3753111, Aug 28, 1973b.
[118] Navarro P. and F.J. Alguaci, Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon, Hydromet., 66, 1-3, 2002, pp.101-105
[119] Ivanov I., Y. Stefanov, Z. Noncheva, M. Petrova, Ts. Dobrev, L. Mirkova, R. Vermeersch, J.-P. Demaerel, Insoluble Anodes Used in Hydrometallurgy: Part I. Corrosion Resistance of Lead and Lead Alloy Anodes, Hydromet., 57 (2) (2000) pp.109-124.
[120] Marsden T., and J. Jickling, The next generation of permanent cathode and lead anode technology, Hydromet. Conf. 2009, The S. Afr. Inst. Min. Met., pp.249-255.
[121] Mubarok Z., H. Antrekowisch, G. Mori, Problems in the electrolysis of copper anodes with high contents of nickel, antimony, tin and lead, Proc. 6th Int. Copper/Cobre Conf., Toronto, Canada, 25 - 30 Aug. 2007, Vol V: Copper Electrorefining and Electrowinning, In honor of Charles Cooper, G.E. Houlachi, J.D. Edwards and T.G. Robinson (eds), Met. Soc., pp.59-76.
[122] Bravo J.L.R., Aspects of impurities control at caraiba metals electrorefinery, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997, EPD Congress 1997, B. Mishra (ed), TMS, Warrendale, Pa., (1997) pp.403-412.
[123] Claessens P.L. and G.J. Houlachi, Arsenic removal from electrolytes. US Patent: 4146447, Mar 27, 1979.
[124] Iberhan L., M. Winiewski, Extraction of arsenic(III) and arsenic(V) with Cyanex 925, Cyanex 301 and their mixtures, Hydromet., 63 (1) (2002), p.23–30
[125] Hua H.Q., Y. Zhang, Study on arsenic existence form and practice of arsenic control during copper electrolysis, Min. Met., 20 (2011), p.68–71 (in Chinese)
[126] Abe H., K. Yamaguchi, Y. Asano, Method of treating electrolytic solution of copper for purification and reuse thereof. US Patent: 4404071, Sep. 13, 1983.
[127] Fukui A., N. Tsuchida, K. Ando, Method of recovering antimony and bismuth from copper electrolyte. US Patent: 6153081, Nov. 28, 2000.
[128] Juhasz I., I. Constantin, V. Hotea, E. Pop, M. Podariu, Researches on the electrolyte purification and the useful elements recovery in the copper electrolytic refining process, Rev. Roum. Chim., 53 (5) (2008), p.369–377
[129] Riveros P.A., The removal of antimony from copper electrolytes using amino-phosphonic resins: Improving the elution of pentavalent antimony, Hydromet., 105 (1–2) (2010), p.110–114.
[130] Xiao F-X., J-W. Mao, D. Cao, Formation of antimonate in co-precipitation reaction of As, Sb and Bi in copper electrolytes, Min. Eng., 35 (2012) pp.9-15.
[131] Xiao F-X., J-W. Mao, D. Cao, X. Shen, A.A. Volinsky, The role of trivalent arsenic in removal of antimony and bismuth impurities from copper electrolytes, Hydromet., 125–126, 2012, pp.76-80
[132] Xiao, F. , Cao, D. , Mao, J., Mechanism of precipitate removal of arsenic and bismuth impurities from copper electrolyte by antimony, In H. Zhu and L. Wang (eds), Advances in Metallurgical and Mining Engineering, Adv. Mat. Res., 402, (2011) pp.51-56.
[133] Xiao, F. , Cao, D. , Mao, J., Mechanism of precipitate removal of antimony and bismuth impurities from copper electrolyte by arsenic, In H. Zhu and L. Wang (eds), Advances in Metallurgical and Mining Engineering, Adv. Mat. Res., 402, (2011) pp.297-302.
[134] Murakita S., A. Ohta, S. Narahara, Method for removing As or As and Sb and/or Bi from sulfuric acid, US Patent 4179495, Dec 18, (1979)
[135] Ibanez J.P. and L. Cefuentes, On the kinetics of Cu, As and Sb transport through cation and anion exchange membranes in acidic electrolytes, Can. Met. Q., 43, 4, 2004, pp.439-448
[136] Zheng Y.J., F.X. Xiao, Y. Wang, C.H. Li, W. Xu, H.S. Jian, Y.T. Ma, Industrial experiment of copper electrolyte purification by copper arsenite, J. Cent. South Univ. Technol., 15 (2) (2008), p.204–208
[137] Colomban P.H., M. Doremieux, Y. Piffard, Equilibrium between photonic species and conductivity mechanism in antimonic acid H2Sb4O11·nH2O, J. Mol. Struct., 213, C, 1989, p.83−96.
[138] Naili H. and T. Mhiri, X-ray structural, vibration and calorimetric studies of a new rubidium pentahydrogen arsenate RbH5(AsO4)2, J. Alloys Comp., 315, 2001, p.143−149.
[139] Xiao B-r., Z-f. Su, Y-h. Li, Z-p. Long, M-j. Huang, A new purification method of copper electrolyte, CN Patent 02129694.4, Mar 5, 2003. (in Chinese)
[140] Zheng Y-j., Y. Wang, P-f. Zhao, A method of preparing copper arsenate and copper arsenite from waste water containing arsenic: CN Patent, 200610032456.1, Oct. 25, 2006. (in Chinese)
[141] Zheng Y-j., F-x. Xiao, Y. Wang, X-j. Bao, Preparation and application of copper arsenite, CN Patent 200610031980.7, July 19, 2006. (in Chinese)
[142] Xiao F-x., Y-j. Zheng, Y. Wang, Novel technology of purification of copper electrolyte, Trans. Nonferrous Met. Soc. China, 17(5) 2007, p.1069−1074.
[143] Demaerel J.P., and Metallurgie Hoboken-Overpelt, The behaviour of arsenic in the copper electrorefining process, The Electrorefining and winning of copper: Proc. Symp. by TMS Copper, Nickel, Cobalt, Precious Metals, and Eletrolytic Processes Committees, TMS 116th Ann. Meet. Denver, Colorado, Feb. 24-26, 1987, pp.195-209.
[144] Echigo Y. and T. Nagai, Method for purification of sulfuric acid solution, US Patent 4559216, Dec. 17, 1985; Aus Patent AU1984025229
[145] Biswas A.K. and W.G. Davenport, Extractive metallurgy of copper, Pergamon, Oxford, OX, England and Tarrytown, N.Y., 3rd edn., 1994, 500 pp.
[146] Aydin F., O. Yavuz, E. Ziyadanogullari, R. Ziyadanogullari, Recovery of Copper, Cobalt, Nickel, Cadmium, Zinc and Bismuth from Electrolytic Copper Solution, Turk. J. Chem., 22 (1998), p.149–154
[147] Falco G.D., Copper Electrolyte Purification Systems Expand, Eco-Tec., 2012. http://eco-tec.com/wp-content/uploads/2012/09/CopperElectroPur_Expansion.pdf
[148] Shibayama R., T. Nagai, in: T. Sekine (Ed.), Solvent Extraction 1990, Elsevier, Amsterdam, 1992, p.1193–1198.
[149] Biswas A.K. and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon, New York, 1979.
[150] Hoffmann J.E., Process options in the treatment of copper refinery electrolyte bleed, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997, Update of The Practice of Copper Electrorefinery Bleed-Off Treatment, pp.435-451.
[151] Kumar V., B.D. Pandey, A. Agarwal, D. Bagchi, S. Kumari and S.K. Sahu, Value addition in the processing of copper bleed, solution by solvent extraction process, In: Proc. Int. Solvent Extr. Conf., ISCE 2005.
[152] Byszyński L., L. Garyck, I. Ewart, P. Rossi, Pilot test of EMEW® technology application to copper electrorefinery bleed streams with high arsenic content, at the KGHM Głogów II Smelter tank house bleed stream, COM 2007, International Symposium on Light Metals in Transport Applications, Ses. 61, Paper #0784
[153] Dobner R.F. Bleed-off treatment of hk-secondary copper electrorefinery, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997.
[154] Moldoveanu G., Behavior and control in copper electrorefining, Technical Essay in the course Electrochemical Processing (306-551B), McGiII University, Canada April (1999)
[155] Larouche P., Minor elements in copper smelting and electrorefining, ME Thesis, 2001, McGiII University, Montreal, Canada.
[156] Bravo J.L.R., Studies on the changes of the electrolyte purification plant at Caraiba Metals, Brazil, In Copper'95-Cobre'95, vol. III: W.C. Cooper et al. (eds) Electrorefining and Hydrometallurgy of Copper, The Met. Soc. CIM, Montreal, QC, 1995, pp.315-324.
[157] Cupertino D.C., P.A. Tasker, M.G. King, J. Jackson, 123rd SME Ann. Meet., Albuquerque, NM, USA, Feb. 1994a.
[158] Cupertino D.C., P.A. Tasker, M.G. King, J.S. Jackson, Removal of antimony and bismuth from copper tankhouse electrolytes, Hydrometallurgy '94, Chapman & Hall for IMM-SCI, London (1994b), pp.591-600
[159] Rondas F., J. Scoyer and C. Geenen, Solvent extraction of arsenic with TBP – The influence of the high iron concentration on the extraction behaviour of arsenic, In Copper'95-Cobre'95, vol. III: W.C. Cooper et al. (eds) Electrorefining and Hydrometallurgy of Copper, The Met. Soc. CIM, Montreal, QC, 1995, pp.325-355.
[160] Sheedy M., P. Pajunen and V. Westrom, Control of copper electrolyte impurities – Overview of the short-bed ion exchange technique and Phelps Dodge EL Paso case study, In Copper-2007, vol. V: Copper Electrorefining and Electrowinning, G.E. Houlachi, J.D. Edward, and T.G. Robinson (eds), Met Soc. CIM, Montreal, QC, 2007, pp.345-357.
[161] Kim D-H., Y-H. Kim, W-S. Chung, The Effect of Arsenic on Copper Electrodeposition in Copper-Sulfate Solutions in Copper-Electrorefining, J. Korean Inst. Surf. Eng., 42. 3, 2009, pp.103-108
[162] Ritcey G.M. and A.W. Ashbrook, Solvent Extraction, Principles and Applications to Process Metallurgy, Part II, Elsevier, Amsterdam, (1979).
[163] Buttinelli D., C. Giavarini and A. Mercanti, Proc. ISEC'83, Denver, USA, (1983), Solid Supported Liquid Membrane I, pp.422-425.
[164] Togashi R. and T. Nagai, Hydrogen reduction of spent copper electrolyte, Hydromet., 11 (2), 1983, p.149–163.
[165] Shibasaki T., E. Ohsima, S. Ishiwata and H. Tanaka, The Electrorefining and Winning of Copper, J.E. Hoffman, R.G. Bautista, V.A. Ettel, V. Kudryk, and R.J. Wesel (eds.), AIME, Pennsylvania, (1987) pp.223-237.
[166] Toyabe K., C. Segawa and H. Sato, Impurity control of electrolytr at Sumito Niihama copper refinery, The Electrorefining and Winning of Copper, 16th TMS Ann. Meet., Feb. 24, 1987, Devner, CO, J.E. Hoffman, R.G. Bautista, V.A. Ettel, V. Kudryk, and R.J. Wesel (eds.), AIME, Pennsylvania, (1987) pp.117-128.
[167] Agarwal A., B.D. Pandey, V. Kumar and Premchand, Proc. Seminar Recovery of Valuable By-products from Intermediate Secondaries in Nonferrous Industries, Ghatsila, India, (1996) pp.36-43.
[168] Littlejohn P., Technical Review – Copper Solvent Extraction in Hydrometallurgy, MTRL 557, Dec. 2007, Submitted to Dr. David Dreisinger.
[169] Nyirenda, R. L. and Phiri, W. S., The removal of nickel from copper electrorefining bleed-off electrolyte, Min. Eng., 11(1), 1998, p.23–27.
[170] Agarwal et al., 2006 Agrawal, A., Kumari, S., Bagchi, D., Kumar, V., and Pandey, B. D., Hydrogen reduction of copper bleed solution from an Indian copper smelter for producing high purity copper powders, Hydromet., 84, 2006, p.218–224.
[171] Kumari S., A. Agrawal, D. Bagchi, B.D. Pandey, and V. Kumar, Synthesis of copper metal/salts from copper bleed solution of a copper plant, Min. Process. Extr. Met. Rev., 27(2), 2006, p.159–175.
[172] Agrawal A., S. Kumari, D. Bagchi, V. Kumar, and B.D. Pandey, Recovery of copper powder from copper bleed electrolyte of an Indian copper smelter by electrolysis, Min. Eng., 20, 2007, p.95–97.
[173] Agrawal A., D. Bagchi, S. Kumari, V. Kumar, and B.D. Pandey, Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis, Powder Technol., 177, 3, 2007. pp.133-139.
[174] Agrawal A., D. Bagchi, S. Kumari and B.D. Pandey, An overview of process options and behavioral aspects of the copper values recovered from the copper bleed stream of a copper smelter developed at the National Metallurgical Laboratory, Min. Process. Extr. Met. Rev., 30 (2), 2009, pp.136-162
[175] Schwab W., H. Kroke, in: R.G. Reddy, J.L. Hendrix, P.B. Queneau (Eds.), Arsenic Metallurgy Fundamentals and Applications, TMS-AIME, Warrendale, 1988, p.249–262.
[176] Navarro P. and F.J. Alguacil, Removal of arsenic from copper electrolytes by solvent extraction with tributylphosphate, Can. Met. Q., 35 (2) (1996), pp.133-141.
[177] Schulze R., Process for preventing supersaturation of electrolytes with arsenic, antimony and bismuth, US Patent 3696012, Oct. 3, (1972)
[178] Eguez H.E., E.H. Cho, Adsorption of arsenic on activated charcoal, JoM, 39 (7) (1987), pp.38-41
DOI: 10.1007/bf03258040
[179] Gabai B., N.A.A. dos Santos, D.C.S. Azevêdo, S. Brandani and C.L. Cavalcante Jr., Removal of copper electrolyte contaminants by adsorption, Braz. J. Chem. Eng., 14, 3, (1997)
[180] Cefuentes L., G. Crisosmtomo, J.P. Ibanez, J.M. Casa, F. Alvarez, G. Cifeuentes, On the electrodialysis of aqueous H2SO4–CuSO4 electrolytes with metallic impurities, J. Memb. Sci., 207, 1, 2002, pp.1-16.
[181] Cifuentes L., R. Glasner, J.M. Casas, Aspects of the development of a copper electrowinning cell based on reactive electrodialysis. Chem. Eng. Sci., 59, 2003, p.1087–1101.
[182] Cifuentes, L., C. Mondaca, J.M. Casas, The effectiveness of membrane systems for the separation of anolyte and catholyte in a labscale copper electrowinning cell based on reactive electrodialysis. Min. Eng., 17, 2004, p.803–809.
[183] Cifuentes, L., and Casa, J.M., Advances in the treatment of CuSO4-H2SO4-As-Sb-H2O solutions by electrodialysis, CIM Bull., 97, 1081, 2004.
[184] McKevitt B.R., Removal of iron by ion exchange from copper electrowinning electrolyte solutions containing antimony and bismuth, M.E. Thesis, 2007, Univ. British Columbia
[185] Halle O., W. Podszun and B. Hees, Process for Purifying Sulphuric Acids, US Patent Appl. 20080229882, Sep. 25, (2008)
[186] Riveros P.A., J.E. Dutrizac, R. Lastra, A study of the ion exchange removal of antimony(III) and antimony(V) from copper electrolytes, Can. Met. Q., 47 (3) (2008), p.307–315
[187] Baradel A., R. Guerriero, L. Meregalli, I. Vittadini, Extraction of As from Copper Refining Electrolyte, JoM, 38 (2) 1986, pp.32-37.
DOI: 10.1007/bf03257918
[188] Dreisinger D.B., B.J.Y. Leong, B.J. Balint, M.H. Beyad, The solvent extraction of As, Sb and Bi from copper refining electrolytes using organophosphorous reagents, in: D.H. Logsdail, M.J. Slater (Eds.), Solvent Extraction in the Process Industries, Vol. 3, Elsevier for SCI, London, 1993, p.1271–1278.
[189] Dreisinger D.B., B.J.Y. Leong, I. Grewal, Recent advances in solvent extraction and ion exchange of As, Sb and Bi from copper refinery electrolytes, in: B. Harris, E. Krause (Eds.), Impurity Control and Disposal in Hydrometallurgical Processes, The Metallurgical Society of the CIMMP, Montreal, 1994, p.71–89.
[190] Dreisinger D.B., B.J.Y. Leong, Method for selectively removing antimony and bismuth from sulphuric acid, US Patent 053667158, Nov. 22, 1994.
[191] Dreisinger D. and B.J.Y. Scholey, Ion exchange removal of antimony and bismuth from copper refinery electrolytes, Copper, Santiago, Chile, 26-29 Nov. 1995. Ed. W.C. Cooper, D.B. Dreisinger, J.E. Dutrizac, H. Hein, and G. Ugarte. Montreal, Quebec: Canadian Institute of Mining Metallurgy and Petroleum, 1995. pp.305-314.
[192] Sato H., Method of removing antimony from an antimony-containing copper electrolyte, US Patent 4444666, Apr 24, (1984)
[193] Petkova E.N. and H. Vassilev, The kinetics of antimony(III) sorption on inorganic ion exchangers for its removal fromcopper refining electrolytes, Hydromet., 8, 2, 1982, pp.185-191
[194] Petkova E.N. and H. Vassilev, Mechanism of antimony(III) sorption on β-stannic acid, Hydromet., 10, 3, 1983, p.391–396.
[195] Leng Y., W. Guo, S. Su, Removal of antimony(III) from aqueous solution by graphene as an adsorbent , Chem. Eng. J., 211-212 (2012) p.406–411
[196] Petkova E.N. and H. Vassilev, Mechanism of antimony(III) sorption on β-stannic acid, Hydromet., 10, 3, 1983, p.391–396.
[197] Ando K., A. Fukui and N. Tsuchida, Method of recovering antimony and bismuth from copper electrolyte, US 6153081 A, Nov. 28, (2000)
[198] Aydin F., O. Yavuz, E. Ziyadanogullari, R. Ziyadanogullari, Recovery of Copper, Cobalt, Nickel, Cadmium, Zinc and Bismuth from Electrolytic Copper Solution, Turk. J. Chem., 22 (1998), pp.149-154.
[199] Tomita M., H. Hiai, T. Ishii, Method of purifying copper electrolyteic solution, U.S. Patent No 5,783,057, July 21, 1998.
[200] Hassler C.R. and C.F. Whitehead, Use of a rare earth for the removal of antimony and bismuth, USP Application 20100258448, Oct 14, (2010)
[201] Ciffuentes G., J. Simpson, C. Vargas, New process for the precipitation of Sb and Bi from copper electrolytes with PbO2, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.125-801; WO 2012080988 A4, May 23, (2013)
[202] Xiao F.X., Y.J. Zheng, Y. Wang, H.S. Jian, C.H. Li, W. Xu, Y.T. Ma, Preparation of copper arsenite and its application in purification of copper electrolyte, Trans. Nonferrous Met. Soc. China, 18 (2) (2008), p.474–479.
[203] Xiao F.X., Y.J. Zheng, Y. Wang, H.S. Jian, X.G. Huang, Y.T. Ma, Purification mechanism of copper electrolyte by As(III), Trans. Nonferrous Met. Soc. China, 18 (5) (2008), p.1275–1279.
[204] Xiao F-x., D. Cao, J-w. Mao, X-n. Shen, F-z. Ren, Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes, Int. J. Min. Met. Mat., 20, 1, 2013, pp.9-16
[205] Baipeisova B.S., M.Z. Ugorets and Z.M. Tokaeva, Influence of acidity on the degree of precipitation of arsenic(V) from solutions by titanium(IV) hydroxide, J. Appl. Chem. USSR (Engl. Transl) 59:6, 1986; Translated from Zh. Prikl. Khim. 59, 6, 1986, pp.1316-1318 (in Russian).
[206] Rajput R.P.S. and N.S. Seth, Chromatographic behaviour of metal ions on tin(IV) and titanium(IV) antimonate papers, Chromatograph., 13, 4, 1980, pp.219-222
DOI: 10.1007/bf02261875