Copper Refining Electrolyte and Slime Processing - Emerging Techniques

Article Preview

Abstract:

Copper electro-refining (Cu-ER) is the principal method for producing >70% of high or 99.97% pure copper cathodes from 97-99% pure blister/fire refined-scrap copper anodes. While the inert and most of less soluble impurities settle as anode slime/sludge, other soluble impurities, particularly the metalloids (group VA/15 elements or Q: As, Sb and Bi) and some transition metals (Mt) co-dissolved with Cu(II). Since the soluble impurities build up in the copper refining electrolyte (CRE) which need monitoring and control to prevent contamination of the cathodes and passivation of the anodes before bleeding for spent CRE reprocessing. There is a high demand for pure electrorefined copper and electrolyte additives are added to the CRE to prevent nodulation or control the chemical and physical properties of copper cathodes. Various hydrometallurgical methods such as precipitation, adsorption, electro-dialysis, electro-winning, ion exchange and solvent extraction have been developed with some success to control the CRE impurities. So some emerging technologies for improved monitoring and control of the metalloid impurities in CRE and slime as well as development of saleable byproduct recovery (As, Sb, Bi) are briefly reviewed with particular emphasis on the precipitation for the metalloid slime resource recycling and product development.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-115

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Habasi F., Copper, History & Metallurgy, Metallurgie Extractive Quebek, Quebek City (2009)

Google Scholar

[2] Markovic R., J. Stevanovic, M. Gvozdenovic, B. Jugovic, A. Grujic, D. Nedeljkovic, J. Stajic-Trosic, Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes, Int. J. Electrochem. Sci., 8 (2013) pp.7357-7370

DOI: 10.1016/s1452-3981(23)14851-6

Google Scholar

[3] ASTM B115 - 10 Standard Specification for Electrolytic Copper Cathode, 2010.

Google Scholar

[4] Piret N.L., Optimizing bismuth control during copper production, JoM, 46 (10), 1994, pp.15-18.

DOI: 10.1007/bf03222600

Google Scholar

[5] Mitevska N. and Z.D. Zivkovic, Thermodynamics of As, Sb and Bi distribution during reverb furnace smelting, J. Min. Met., 38 (1-2) B (2002) pp.93-102

DOI: 10.2298/jmmb0202093m

Google Scholar

[6] Moats M.S., S. Wang, D. Kim, A review of the behavior and deportment of lead, bismuth, antimony and arsenic in copper electrorefining, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.3-122.

DOI: 10.1002/9781118364833.ch1

Google Scholar

[7] Chen T.T., J.E. Dutrizac and S. Beauchemin, The deportment of arsenic in copper electrorefining circuits, Elelctrometallurgy, B. Hiskey and T. Robinson (Sec. eds.), Hydrometallurgy 2008: Proc. 6th Int. Symp. (Hon. R.S. Shemaker, Phonix, Arizona), C. Young, P.R. Taylor, C.G. Anderson, SME, 2008, pp.608-617.

Google Scholar

[8] Nagamori M. and P.J. Mackey, Thermodynamics of copper matte converting: Part I. Fundamentals of the Noranda process, Met. Trans., 9B (2) (1978) pp.255-265; Thermodynamics of copper matte converting: Part II. Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process, Met. Trans., 9B (4) (1978) pp.567-579.

DOI: 10.1007/bf03257205

Google Scholar

[9] Surapunt S., Computer Simulation of the Distribution Behavior of Minor Elements in the Copper Smelting Process, Thammasat Int. J. Sc. Tech., 9, 4, 2004, pp.61-68.

Google Scholar

[10] Riveros G. and T.A. Utigard, Disposal of arsenic in copper discharge slags, J. Hazard. Mat., 77 (1) 2000, p.241−252.

DOI: 10.1016/s0304-3894(00)00255-7

Google Scholar

[11] Petkova E.N., Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper, Hydromet., 46 (3) (1997), p.277–286

DOI: 10.1016/s0304-386x(97)00024-8

Google Scholar

[12] Dutrizac J.E. and T.T. Chen, The role of hydrometallurgy in the recycling of zinc, copper and lead, Acta Met. Slovaca, (1) (1998), p.5–28

Google Scholar

[13] Navarro P., J. Simpson, F.J. Alguacil, Removal of antimony(III) from copper in sulphuric acid solutions by solvent extraction with LIX 1104SM, Hydromet., 53 (2) 1999, p.121−131.

DOI: 10.1016/s0304-386x(99)00033-x

Google Scholar

[14] Wang X-w., Q-y. Chen, Z-l. Yin, P-m. Zhang, Z-p. Long, Z-f. Su, Removal of impurities from copper electrolyte with adsorbent containing antimony, Hydromet., 69(1-3) 2003, p.39−44.

DOI: 10.1016/s0304-386x(03)00026-4

Google Scholar

[15] Wang X-w., Q-y. Chen, Z-l. Yin, L-s. Xiao, Identification of arsenato antimonates in copper anode slimes, Hydromet., 84(3/4) 2006, p.211−217.

DOI: 10.1016/j.hydromet.2006.05.013

Google Scholar

[16] Chen T.T. and J.E. Dutrizac, A Mineralogical Study of the Effect of the Lead Content of Copper Anodes on the Dissolution of Arsenic, Antimony and Bismuth During Copper Electrorefining, Can. Met. Q., 42, 4, 2003, pp.421-432.

DOI: 10.1179/cmq.2003.42.4.421

Google Scholar

[17] Chen T.T. and J. E. Dutrizac, Mineralogical characterization of a copper anode and the anode slimes from the La Caridad copper refinery of Mexicana de Cobre, Met. Mat. Trans. B, 36B (2) (2005) pp.229-240.

DOI: 10.1007/s11663-005-0024-1

Google Scholar

[18] Hyvarinen O.V.J., Process for selective removal of bismuth and antimony from an electrolyte, especially in electrolytic refining of copper, US Patent 4157946, June 12, 1979.

Google Scholar

[19] Baltazar V., P.L. Claessens and J. Thiriar, Effect of arsenic and antimony in copper electrorefining, The Electrorefining and Winning of Copper, J.E. Hoffmann, R.G. Bautista, V.A. Ettel, V. Kudruk and R.J. Wesely, Met. Soc. AIME, Warrendale, PA, 1987, pp.211-222.

Google Scholar

[20] Noguchi F., Y. Iida, T. Nakamura, Y. Ueda, Behaviour of Anode Impurities in Copper Electrorefining, Shigen-to-Sozai (Japan), 107, 8 (1991) pp.569-575 (in Japanese)

DOI: 10.2473/shigentosozai.107.569

Google Scholar

[21] Kamath B.P., A.K. Mitra, S. Radhakrishnan, K. Shetty, Electrolyte impurity control at Chinchpada refinery of Sterlite Industries (India) limited, Copper – 2003, vol. V: Copper Electrorefining Electrowinning, MetSoc. (2003), Electrorefining operations, p.137–150; eco-tec TP 167, Dec. 2003, 12 pp.

Google Scholar

[22] Ahana S-C., S-M. Lee, Y-H. Kim, W-S. Chung, U-C. Chung, Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode, J. Korean Inst. Surf. Eng., 39, 5, 2006, pp.215-222

Google Scholar

[23] Moller C.A., M. Bayanmunkh and B. Friedrich, Influence of As, Sb, Bi and O on copper anode behaviour – Part 3: Elemental distribution, Erzmetall., 62 (2) 2009, pp.70-80.

Google Scholar

[24] Moller C.A., B. Friedrich and M. Bayanmunkh, Influence of As, Sb, Bi and O on copper anodes during electrorefining, Proc. Copper 2010, GDMB, Germany, pp.1495-1510.

Google Scholar

[25] Wang X.W., Q.Y. Chen, Z.L. Yin, M.Y. Wang, B.R. Xiao, F. Zhang, Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining, Hydromet., 105 (3-4) (2011a), p.355–358

DOI: 10.1016/j.hydromet.2010.10.004

Google Scholar

[26] Wang X.W., Q.Y. Chen, Z.L. Yin, M.Y. Wang, F. Tang, The role of arsenic in the homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte, Hydromet., 108 (3–4) (2011), p.199–204

DOI: 10.1016/j.hydromet.2011.04.007

Google Scholar

[27] King M.G., J.S. Jackson, W.H. Heung, Process for the removal of bismuth from copper refining electrolyte by using lead oxide, US Patent 5133948, July 28, (1992)

Google Scholar

[28] Baboudjian V.P. and J.S. Stafiej, Selective bismuth and antimony removal from copper electrolyte, US Patent 5573739, Nov. 12, (1996)

Google Scholar

[29] Moats M.S. and J.B. Hiskey, The role of electrolyte additives on passivation behaviour during copper electrorefining, Can. Met. Q., 39, 3, 2000, pp.297-306

DOI: 10.1179/cmq.2000.39.3.297

Google Scholar

[30] Gupta C.K., Chemical Metallurgy Principles and Practice, Wiley-VCH Verlag GmbH, 2003/2006, Ch. 6. Electrochemistry, Sec. 9.1. Copper, pp.717-723

Google Scholar

[31] Marković R., Friedrich B., Stevanović J., Jugović B., Gvozdenović M., Stajić-Trošić J., Jordović B., Removal of as from the sulphur acidic waste solution obtained in the electrolytic copper refining process, 14th Int. Res./Expert Conf. "Trends in the Development of Machinery and Associated Technology" TMT 2010, Mediterranean Cruise, 11-18 Sep. 2010a, pp.345-348.

DOI: 10.1016/j.jhazmat.2010.05.137

Google Scholar

[32] Dutrizac J.E. and T.T. Chen, Mineralogical characterization of anode slimes, Can. Met. Q., 27 (2) (1988), p.91–115

Google Scholar

[33] Dutrizac J.E. and T.T. Chen, The behaviour of gold and silver during copper electrorefining, B. Harris (Ed.), Precious Metals 1989, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.425

Google Scholar

[34] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of anode slime: Part V- Nickel rich copper amodes from the CCR division of Naranda Minerals Inc. Can. Met. Q., 29, 1, 1990b, pp.27-37.

DOI: 10.1179/cmq.1990.29.1.27

Google Scholar

[35] Cunnigham R.M., J.V. Calara, M.G. King, Removal of antimony and bismuth from copper electrolyte, B. Mishra (Ed.), Development of a Commercial Plant at Amarillo Copper Refinery. EPD Congress 1997, TMS, Warrendale, PA (1997), p.453–460

Google Scholar

[36] Biswas, A.K. and W.G. Davenport, Extractive Metallurgy of Copper, British Library, 3rd ed., 1999, p.264–287.

Google Scholar

[37] Larouche P., Minor elements in copper smelting and electrorefining, M.E. Thesis, Nov., 2001, McGill University, Montreal, Canada.

Google Scholar

[38] Davenport W.G.L., M. King, M. Schlesinger, A.K. Biswas, Extractive Metallurgy of Copper, Pergamon, 4th Edn, 2002.

Google Scholar

[39] Stelter M. and H. Bombach, Copper Electrorefining – State of Art and Perspectives, Erzmetal., 54, 9S, 2001, pp.432-438

Google Scholar

[40] Stelter M. and Bombach H., Process optimization in copper electrorefining, Adv. Eng. Mat., 6, 7, 2004, pp.558-562.

DOI: 10.1002/adem.200400403

Google Scholar

[41] Jarjoura G. and G.J. Kipouros, Effect of nickel on copper anode passivation in a copper sulfate solution by impedance spectroscopy, J. Appl. Electrochem., 36 (2006a) pp.691-701.

DOI: 10.1007/s10800-006-9130-2

Google Scholar

[42] Jarjoura G. and G.J. Kipouros, Electrochemical Studies on the Effect of Nickel on Copper Sulphate Solution, Can. Met. Q., 45 (3) (2006b) pp.283-294

DOI: 10.1179/cmq.2006.45.3.283

Google Scholar

[43] Beauchemin S., T.T. Chen and J.E. Dutrizac, Behaviour of antimony and bismuth in copper electrorefining circuits, Can. Met. Q., 47, 1, 2008, pp.9-26

DOI: 10.1179/cmq.2008.47.1.9

Google Scholar

[44] Hermann C., Process for optimizing the process of copper electro-winning and electro-refining by superimposing a sinusoidal current over a continuous current, US Pattent Appln. 20110024301, Feb. 3, (2011)

Google Scholar

[45] Leahy M.J. and M.P. Schwartz, Modeling Natural Convection in Copper Electrorefining: Describing Turbulence Behavior for Industrial-Sized Systems, Met. Mat. Trans. B, 42, 4, 2011, pp.875-890.

DOI: 10.1007/s11663-011-9504-7

Google Scholar

[46] Filzwieser A., I. Filzwieser, S. Konetschnik, Technology for Electrorefining of Copper, JoM, 64, 11, 2012, pp.1290-1295

DOI: 10.1007/s11837-012-0459-1

Google Scholar

[47] Wenzl C., I. Filzwieser, S. Konetschnik, METTOP-BRX technology – Industrial application, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.63-76.

DOI: 10.1002/9781118364833.ch5

Google Scholar

[48] Andersen T.N., R.D. Budd, and R.W. Strachan, A Rapid Electrochemical Method for Measuring the Concentration of Active Glue in Copper Refinery Electrolyte Which Contains Thiourea, Met. Trans. B, 7B (3), 1976, p.333–338.

DOI: 10.1007/bf02652702

Google Scholar

[49] O'Keefe T.J. and L.R. Hurst, The effect of antimony, chloride ion, and glue on copper electrorefining, J. Appl. Electrochem., 8, 2, 1978,  pp.109-119.

DOI: 10.1007/bf00617669

Google Scholar

[50] Mirkova L., N. Petkova, I. Popova, St. Rashkov, The effect of some surface active additives upon the quality of cathodic copper deposits during the electro-refining process, Hydromet., 36, 2,  1994, pp.201-213.

DOI: 10.1016/0304-386x(94)90006-x

Google Scholar

[51] Mirkova L. and St. Raskov, Anodic behaviour of copper during electrorefining using a rotating ring-disc electrode, J. Appl. Electrochem., 24, 5, 1994, pp.420-425

DOI: 10.1007/bf00254154

Google Scholar

[52] Veilleux, B. Lafront, A.-M. Ghali, E., Effect of Thiourea on Nodulation During Copper Electrorefining Using Scaled Industrial Cells, Can. Met. Q., 40, 3, 2001, pp.343-354

DOI: 10.1179/cmq.2001.40.3.343

Google Scholar

[53] Zheng Z., Fundamental studies of the anodic behaviour of thiourea in copper electrorefining, Ph.D. Thesis, Mar. 2001, Univ. British Columbia

Google Scholar

[54] Veilleux B. Lafront A-M., Ghali E., Roberge P.R., The use of electrochemical noise measurements to detect bad copper electrorefining conditions, J. Appl. Electrochem., 33, 11, 2003, pp, 1093-1098

DOI: 10.1023/a:1026266432219

Google Scholar

[55] Ilkhchi M.O., H. Yoozbashizadeh, M.S. Safarzadeh, The effect of additives on anode passivation in electrorefining of copper, Chem. Eng. Process: Process Intensific., 46, 8. 2007, pp.757-763.

DOI: 10.1016/j.cep.2006.10.005

Google Scholar

[56] Safizadeh F., A.M. Lafront, E. Ghali, G. Haulachi, Monitoring the influence of gelatin and thiourea on copper electrodeposition employing electrochemical noise technique, Can. Met. Q.,   49, 1, 2010, pp.21-18

DOI: 10.1179/cmq.2010.49.1.21

Google Scholar

[57] Safizadeh F. and E. Ghali, E. Monitoring passivation of Cu-Sb and Cu-Pb anodes during electrorefining employing electrochemical noise analyses, Electrochim, Acta, 56, 1, 2010, pp.93-101.

DOI: 10.1016/j.electacta.2010.09.046

Google Scholar

[58] Muhlare T.A. and Groot D.R., The effect of electrolyte additives on cathode surface quality during copper electrorefining, J. South African Inst. Min. Met., 111, 2011, pp.371-378.

Google Scholar

[59] Schlesinger M.E., M.J. King, K.C. Sole and W.G. Davenport, Extractive Metallurgy of Copper, Elsevier, 5th Edn., 2011, Ch. 14. Electrolytic Refining, pp.251-280

DOI: 10.1016/b978-0-08-096789-9.10014-9

Google Scholar

[60] Fabian C.P. and T.W. Lancaster, Process for cooper electrowinning and electrorefining, US Patent 8293093 B2, Oct. 23, (2012)

Google Scholar

[61] Safizadeh F., A.M. Lafront, E. Ghali, G. Haulachi, An investigation of the influence of selenium on copper deposition during electrorefining using electrochemical noise analysis, Hydromet., 111-112, 2012, p.29–34

DOI: 10.1016/j.hydromet.2011.09.008

Google Scholar

[62] EFS, 2013: Electrolyte Filtration System, TFI Filteration (India) Pvt. Ltd., Ahamedabad, Gujrat, http://www.thefiltrationindia.com/electrolyte_a.html

Google Scholar

[63] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of a copper anode and the anode slimes from the La Caridad Copper Refiner of Mexicana de Cobre. Met. Mat. Trans., B, Proc. Metall. Mater. Proc. Sci. 36B (2), 2005, p.229–240.

DOI: 10.1007/s11663-005-0024-1

Google Scholar

[64] Wenzl C., A. Filzweiser, H. Antrekowitsch, Review of anode casting - part I: Chemical Anode Quality, Erzmetall, 60 (2) (2007), pp.71-82; Review of anode casting - part II: physical anode quality, Erzmetall, 60 (2) (2007), pp.83-88.

Google Scholar

[65] Wenzl C., I. Filzwieser, G. Mori, J. Pesl, Investigations on Anode Quality in Copper Electrorefining, BHM, 153, 3, 2008, pp.91-96.

DOI: 10.1007/s00501-008-0356-7

Google Scholar

[66] Chen T.T. and J.E. Dutrizac, Mineralogical characterization of anode slimes: Part 7 – copper anodes and anode slimes from the Chuquicamata division of Codelco-Chile, Can. Met. Q., 30, 2, 1991a, pp.95-106

DOI: 10.1179/cmq.1991.30.2.95

Google Scholar

[67] Ling X., Gu Z.H., Fahidi T.Z., Anode slime behaviour in a laboratory-scale copper electrorefining process, Can. J. Chem. Eng., 72, 4, 1994, pp.683-694.

DOI: 10.1002/cjce.5450720418

Google Scholar

[68] Ling X., Z.H. Gu, T.Z. Fahidy, Effect of operating conditions on anode passivation in the electrorefining of copper, J. Appl. Electrochem., 24 (11) (1994) pp.1109-1115.

DOI: 10.1007/bf00241308

Google Scholar

[69] Fernandez M.A., M. Segarra, F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydromet., 41, 2-3, 1996, p.255–267

DOI: 10.1016/0304-386x(95)00061-k

Google Scholar

[70] Hait J., R.K. Jana, S.K. Sanyal, Mineralogical Characteristics of Copper Electrorefining Anode Slime and Its Leached Residues, Ind. Eng. Chem. Res.,  43 (9) 2004, p.2079–2087.

DOI: 10.1021/ie0305465

Google Scholar

[71] Hait J., R.K. Jana, S.K. Sanyal, Processing of copper electrorefining anode slime: a review, Min. Process Extr. Met. Rev., 118, 4, 2009, pp.240-252

DOI: 10.1179/174328509x431463

Google Scholar

[72] Tomingas N., Analysis of Copper Refinery Electrolyte by a Condensed D.C. Arc Solution Technique, Appl. Spec., 14, 3, (1960) pp.72-73

DOI: 10.1366/000370260774614463

Google Scholar

[73] Xiao F-X., D. Cao, J-W. Mao, Determination of arsenic and antimony in copper electrolyte by hydrogen peroxide pretreatment-continuous titration method, Met. Anal., 32(3) 2012, pp.64-69 (Chinese with Engl. Abs.)

Google Scholar

[74] Braun, T.B., J.R. Rawling, K.J. Richards, Factors affecting the quality of electrorefining cathode copper. In: Yannopoulos, J.C., Agrwal, J.C. (Eds.), Extractive Metallurgy of Copper, vol. I, The Metallurgical Society, Inc., New York, AIME, Las Vegas, 1976, Ch. 25-Electrorefing of Copper, p.511–524.

Google Scholar

[75] Petkova E.N., Microscopic examination of copper electrorefining slimes, Hydromet., 24, 3, 1990, p.351–359

DOI: 10.1016/0304-386x(90)90098-m

Google Scholar

[76] Petkova E.N., Hypothesis about the origin of copper electrorefining slime, Hydromet, 34, 3, 1994, p.343–358

DOI: 10.1016/0304-386x(94)90071-x

Google Scholar

[77] Mirkova L., N. Petkova, I. Popova, St. Rashkov, The effect of some surface active additives upon the quality of cathodic copper deposits during the electro-refining process, Hydromet., 36, 2,  1994, pp.201-213.

DOI: 10.1016/0304-386x(94)90006-x

Google Scholar

[78] Ando K. and M. Sugimoto, Impurity Deposition on Starting Sheet in Copper Electrorefining, J. Mining Mat. Process. Inst. Japan, 117, 11, 2011, pp.885-890 (Japnese)

Google Scholar

[79] Abe S., B.W. Burrows, V.A. Ettel, Anode Passivation in Copper Refining, Can. Met. Q., 19 (3) 1980, pp.289-296.

DOI: 10.1179/cmq.1980.19.3.289

Google Scholar

[80] Noguchi F., T. Nakamura, Y. Ueda, Behaviour of anode impurities in copper electrorefining. Effect of bismuth, arsenic, antimony and oxygen in copper anode, Shigen-to-Sozai,105, 4, (1989) pp.321-327 (Japanese)

DOI: 10.2473/shigentosozai.105.321

Google Scholar

[81] Hoffmann J.E., The purification of copper refinery electrolyte, JOM, 56 (7) (2004), p.30–33.

DOI: 10.1007/s11837-004-0088-4

Google Scholar

[82] Wang S., Impurity control and removal in copper tankhouse operations, JoM, 55 (7), 2004, pp.34-37.

DOI: 10.1007/s11837-004-0089-3

Google Scholar

[83] Chen T.T. and J.E. Dutrizac, Characterisation of the liberator cells sludges from three copper electrorefineries, Can. Met. Q., 48, 1, 2009, pp.61-68

DOI: 10.1179/cmq.2009.48.1.61

Google Scholar

[84] Navarro L., T. Morris and W. Read, Copper Refining Electrolyte Purification by the Use of Molecular Recognition Technology (MRT) for Bismuth Removal, T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), The Wiley/TMS, 2012, pp.141-150.

DOI: 10.1002/9781118364833.ch12

Google Scholar

[85] Abe S., Y. Takasawa, Prevention of floating slimes precipitation in copper electrorefining, J.E. Hoffmann, R.G. Bautista, V.A. Ettel, V. Kudryk, R.J. Wesely (Eds.), TMS-AIME, The Electrorefining and Winning of Copper, Denver, Colorado, USA (1987), p.87–98

Google Scholar

[86] Backstrom J., Copper, Nickel and Tellurium yields during leaching of anode slimes, Master Thesis, June 27, 2010, Lulea Univ. Technol.

Google Scholar

[87] Mastyugin S.A. and S.S. Naboichenko, Processing of copper-electrolyte slimes: Evolution of technology, Russ. J. Non-ferrous Met., 53, 5, 2012, pp.367-374

DOI: 10.3103/s1067821212050070

Google Scholar

[88] Marković R., B. Friedrich, J. Stevanović, B. Jugović, M. Gvozdenović, J. Stajić-Trošić, B. Jordović, Removal of as from the sulphur acidic waste solution obtained in the electrolytic copper refining process, 14th Int. Research/Expert Conf. "Trends in the Development of Machinery and Associated Technology" TMT 2010, Mediterranean Cruise, 11-18 Sep. 2010, pp.345-348.

DOI: 10.1016/j.jhazmat.2010.05.137

Google Scholar

[89] Chen T.T. and J.E. Dutrizac, A Mineralogical Study of the Deportment of Impurities during the Electrorefining of Secondary Copper Anodes, Proc. Copper 99 – Cobre 99, Vol. III – Electrorefining and Electrowining of Copper, J.E. Dutrizac, J. Ji, and V. Ramachandran (eds), TMS, Warrandale, PA (1999) pp.437-460.

DOI: 10.1007/bf02696987

Google Scholar

[90] Stafiej J.S., P. Claessens and C.W. Whilte, Tellurium extraction from copper refining slimes, US Patent 5939042, Aug. 17, 1999.

Google Scholar

[91] Anderson C.G., Hydrometallurgical Treatment of Antimony Bearing Industrial Wastes, JoM, 53, 1, 2001, pp.18-20

Google Scholar

[92] Sobral L.G.S. and G.N. Bard, Extraction of gold, silver and copper from the copper electrorefining anode slime: separation of the metals, Contribuição Técnica elaborada para o REWAS 2008 realizado em Cancun – México 12 à 15 de outubro de 2008, CT2008-067-00

Google Scholar

[93] Lottering C., J.J. Eksteent, N. Steenekamp, Precipitation of rhodium from a copper sulphate leach solution in the selenium/tellurium removal section of a base metal refinery, J. S. African Inst. Min. Met., 112 (2012) pp.287-294.

Google Scholar

[94] Kilic Y.  and S. Timur, Dissolution of copper and selenium from copper anode slimes, Proc. Euro. Met. Conf., EMC 2011, June 26-29, Dusseldrof, Germany, Vol. I, (2011) pp.57-70

Google Scholar

[95] Scott J.D., Electrometallurgy of copper refinery anode slimes, Met. Trans. B, 21B (4) (1990), p.629–635

DOI: 10.1007/bf02654241

Google Scholar

[96] Rao G.S., Y.W. Gokhale, S.S. Gupta, Recovery of selenium and tellurium from anode slimes, Ind. J. Technol., 4 (1976), p.201–203

Google Scholar

[97] Hoffmann J.E., Recovering selenium and tellurium from copper refinery slimes, JoM, 41 (7) (1989), p.33–38

DOI: 10.1007/bf03220269

Google Scholar

[98] Valenzuela A., K. Fytas'y, M. Sánchez, Arsenic Management in Copper Smelters, Oct. 7, 2001. http://relevanx.com/web/guest/technology-articles/article/-/article/N2ze/21607/-1/746/arsenic-management-in-copper-smelters

Google Scholar

[99] Lin D.Q., K.Q. Qiu, Removing arsenic from anode slime by vacuum dynamic evaporation and vacuum dynamic flash reduction, Vacuum, 86 (8) (2012), p.1155–1160

DOI: 10.1016/j.vacuum.2011.10.023

Google Scholar

[100] Cooper W.C., The treatment of copper refinery anode slimes, JoM, 42, 8, 1990, pp.45-49

DOI: 10.1007/bf03221054

Google Scholar

[101] Amer A.M., Processing of copper anode-slimes for extraction of metal values, Fizykochem. Probl. Mineralurgii /Physicochem. Probl. Min. Process., 36 (2002) pp.123-134

Google Scholar

[102] Tougarinoff B., F. Van Goetsennhoven, A. Dewulf, Recovery by nitric acid cicle of gold and platinum metals from the anode slimes arising from the electrolysis of doré metal, Advances in Extractive Metallurgy, Inst. of Mining and Metallurgy, London (1968), p.741–758

Google Scholar

[103] Morrison B.H., The evolution of copper refinery slime processing and precious metal treatment at CCR Division — Noranda Minerals, B. Harris (Ed.), Precious Metals, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.403–413

DOI: 10.3403/30423080

Google Scholar

[104] Hyvärinen O., E. Rosenberg, L. Lindroos, Selenium and precious metals recovery from copper anode slimes at Outokumpu Pori Refinery, D.A. Kudry, N. Corrigan, W.W. Liang (Eds.), Precious Metals: Mining, Extraction and Processing, TMS-AIME, Warrendale, Pa (1984), p.537–548

Google Scholar

[105] Lenz J.G., J. Pageau, Treatment of copper anode slimes in a top blown rotary converter, G. Vermeylen, R. Verbeeck (Eds.), Precious Metals 1987, Int. Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1987), p.529–542

Google Scholar

[106] Lessard B., Anode slimes treatment in a top blown rotary converter at the CCR Division of Noranda Minerals Inc, B. Harris (Ed.), Precious Metals, International Precious Metals Inst., publ. in coop. with D. Schneller, Met-Chem Research Inc, Boulder, Colo (1989), p.427–440

Google Scholar

[107] Singh N., S.B. Mathur, Sulphatisation studies on copper anode slimes, Trans. Indian Inst. Met., 29 (6) (1976), p.407–412

Google Scholar

[108] Morris T.T., L.G. Navarro, Autoclave Pressure Oxygen Leaching Of Anodic Copper Slimes, T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 2012, TMS Ann. Meet. Exhibit., pp.91-100

DOI: 10.1002/9781118364833.ch7

Google Scholar

[109] Bard G.N. and L.G.S. Sorbal, Extraction of gold, silver and copper from the copper electrorefining anode slime: separation of the metals, Golobal Symp. Recycling, Waste Treat. Clean Tech., REWAS 2008, Cuncun. Mexico, Oct 12-15, 2008, B. Mishra, C. Ludwig and S. Das (eds), TMS, pp.141-148.

Google Scholar

[110] Anderson C.G., The metallurgy of antimony, Chemie der Erde – Geochem., 72, S4, (2012) p.3–8.

Google Scholar

[111] Anderson C. G., S.M. Nordwick, L.E. Krys, Antimony Separation Process, U.S. Patent 5,290,338, Mar. 1, 1994.

Google Scholar

[112] Noguchi F., M. Yano, T. Nakamura, Y. Ueda, Form of Sb Dissolved into Electrolyte during Copper Electrorefining, Shigen-to-Sozai (Japan),109, 2 (1993) pp.121-125 (in Japanese)

DOI: 10.2473/shigentosozai.109.121

Google Scholar

[113] Wang, X.W., Study on the mechanism of the formation and action of arsenato antimonic acid in copper electrorefining. Ph.D. Thesis, 2003, Central South University, Changsha (in Chinese).

Google Scholar

[114] Peng Y.-L. , Zheng Y.-J. , Chen W.-M., The oxidation of arsenic from As(III) to As(V) during copper electrorefining, Hydromet., 129-130, (2012) pp.156-160.

DOI: 10.1016/j.hydromet.2012.06.009

Google Scholar

[115] Peng Y.-L., Y.-J. Zheng, W.-M. Chen, Separation and recovery of Cu and As during purification of copper electrolyte, Trans. Non-Ferrous Met. Soc., 22, 9, 2012, p.2268–2273

Google Scholar

[116] Palmer B.R., F. Nami, M.C. Fuerstenau, Reduction of arsenic acid with aqueous sulfur dioxide, Metall. Trans. B, 7 (3) (1976), p.385–390

DOI: 10.1007/bf02652709

Google Scholar

[117] Lindstrom R., Elimination of floating slimes during electrorefining of copper, US Patent 3753877, Aug 21/7, 1973a; Lindstrom R., Elimination of floating slimes during electrorefining of copper, US Patent 3753111, Aug 28, 1973b.

Google Scholar

[118] Navarro P. and F.J. Alguaci, Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon, Hydromet., 66, 1-3, 2002, pp.101-105

DOI: 10.1016/s0304-386x(02)00108-1

Google Scholar

[119] Ivanov I., Y. Stefanov, Z. Noncheva, M. Petrova, Ts. Dobrev, L. Mirkova, R. Vermeersch, J.-P. Demaerel, Insoluble Anodes Used in Hydrometallurgy: Part I. Corrosion Resistance of Lead and Lead Alloy Anodes, Hydromet., 57 (2) (2000) pp.109-124.

DOI: 10.1016/s0304-386x(00)00097-9

Google Scholar

[120] Marsden T., and J. Jickling, The next generation of permanent cathode and lead anode technology, Hydromet. Conf. 2009, The S. Afr. Inst. Min. Met., pp.249-255.

Google Scholar

[121] Mubarok Z., H. Antrekowisch, G. Mori, Problems in the electrolysis of copper anodes with high contents of nickel, antimony, tin and lead, Proc. 6th Int. Copper/Cobre Conf., Toronto, Canada, 25 - 30 Aug. 2007, Vol V: Copper Electrorefining and Electrowinning, In honor of Charles Cooper, G.E. Houlachi, J.D. Edwards and T.G. Robinson (eds), Met. Soc., pp.59-76.

Google Scholar

[122] Bravo J.L.R., Aspects of impurities control at caraiba metals electrorefinery, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997, EPD Congress 1997, B. Mishra (ed), TMS, Warrendale, Pa., (1997) pp.403-412.

Google Scholar

[123] Claessens P.L. and G.J. Houlachi, Arsenic removal from electrolytes. US Patent: 4146447, Mar 27, 1979.

Google Scholar

[124] Iberhan L., M. Winiewski, Extraction of arsenic(III) and arsenic(V) with Cyanex 925, Cyanex 301 and their mixtures, Hydromet., 63 (1) (2002), p.23–30

DOI: 10.1016/s0304-386x(01)00198-0

Google Scholar

[125] Hua H.Q., Y. Zhang, Study on arsenic existence form and practice of arsenic control during copper electrolysis, Min. Met., 20 (2011), p.68–71 (in Chinese)

Google Scholar

[126] Abe H., K. Yamaguchi, Y. Asano, Method of treating electrolytic solution of copper for purification and reuse thereof. US Patent: 4404071, Sep. 13, 1983.

Google Scholar

[127] Fukui A., N. Tsuchida, K. Ando, Method of recovering antimony and bismuth from copper electrolyte. US Patent: 6153081, Nov. 28, 2000.

Google Scholar

[128] Juhasz I., I. Constantin, V. Hotea, E. Pop, M. Podariu, Researches on the electrolyte purification and the useful elements recovery in the copper electrolytic refining process, Rev. Roum. Chim., 53 (5) (2008), p.369–377

Google Scholar

[129] Riveros P.A., The removal of antimony from copper electrolytes using amino-phosphonic resins: Improving the elution of pentavalent antimony, Hydromet., 105 (1–2) (2010), p.110–114.

DOI: 10.1016/j.hydromet.2010.08.008

Google Scholar

[130] Xiao F-X., J-W. Mao, D. Cao, Formation of antimonate in co-precipitation reaction of As, Sb and Bi in copper electrolytes, Min. Eng., 35 (2012) pp.9-15.

DOI: 10.1016/j.mineng.2012.05.001

Google Scholar

[131] Xiao F-X., J-W. Mao, D. Cao, X. Shen, A.A. Volinsky, The role of trivalent arsenic in removal of antimony and bismuth impurities from copper electrolytes, Hydromet.,  125–126,  2012, pp.76-80

DOI: 10.1016/j.hydromet.2012.05.011

Google Scholar

[132] Xiao, F. , Cao, D. , Mao, J., Mechanism of precipitate removal of arsenic and bismuth impurities from copper electrolyte by antimony, In H. Zhu and L. Wang (eds), Advances in Metallurgical and Mining Engineering,  Adv. Mat. Res., 402, (2011) pp.51-56.

DOI: 10.4028/www.scientific.net/amr.402.51

Google Scholar

[133] Xiao, F. , Cao, D. , Mao, J., Mechanism of precipitate removal of antimony and bismuth impurities from copper electrolyte by arsenic,  In H. Zhu and L. Wang (eds), Advances in Metallurgical and Mining Engineering,  Adv. Mat. Res., 402, (2011) pp.297-302.

DOI: 10.4028/www.scientific.net/amr.402.297

Google Scholar

[134] Murakita S., A. Ohta, S. Narahara, Method for removing As or As and Sb and/or Bi from sulfuric acid, US Patent 4179495, Dec 18, (1979)

Google Scholar

[135] Ibanez J.P. and L. Cefuentes, On the kinetics of Cu, As and Sb transport through cation and anion exchange membranes in acidic electrolytes, Can. Met. Q., 43, 4, 2004, pp.439-448

DOI: 10.1179/cmq.2004.43.4.439

Google Scholar

[136] Zheng Y.J., F.X. Xiao, Y. Wang, C.H. Li, W. Xu, H.S. Jian, Y.T. Ma, Industrial experiment of copper electrolyte purification by copper arsenite, J. Cent. South Univ. Technol., 15 (2) (2008), p.204–208

DOI: 10.1007/s11771-008-0039-2

Google Scholar

[137] Colomban P.H., M. Doremieux, Y. Piffard, Equilibrium between photonic species and conductivity mechanism in antimonic acid H2Sb4O11·nH2O, J. Mol. Struct., 213, C, 1989, p.83−96.

DOI: 10.1016/0022-2860(89)85108-7

Google Scholar

[138] Naili H. and T. Mhiri, X-ray structural, vibration and calorimetric studies of a new rubidium pentahydrogen arsenate RbH5(AsO4)2, J. Alloys Comp., 315, 2001, p.143−149.

DOI: 10.1016/s0925-8388(00)01309-8

Google Scholar

[139] Xiao B-r., Z-f. Su, Y-h. Li, Z-p. Long, M-j. Huang, A new purification method of copper electrolyte, CN Patent 02129694.4, Mar 5, 2003. (in Chinese)

Google Scholar

[140] Zheng Y-j., Y. Wang, P-f. Zhao, A method of preparing copper arsenate and copper arsenite from waste water containing arsenic: CN Patent, 200610032456.1, Oct. 25, 2006. (in Chinese)

Google Scholar

[141] Zheng Y-j., F-x. Xiao, Y. Wang, X-j. Bao, Preparation and application of copper arsenite, CN Patent 200610031980.7, July 19, 2006. (in Chinese)

Google Scholar

[142] Xiao F-x., Y-j. Zheng, Y. Wang, Novel technology of purification of copper electrolyte, Trans. Nonferrous Met. Soc. China, 17(5) 2007, p.1069−1074.

Google Scholar

[143] Demaerel J.P., and Metallurgie Hoboken-Overpelt, The behaviour of arsenic in the copper electrorefining process, The Electrorefining and winning of copper: Proc. Symp. by TMS Copper, Nickel, Cobalt, Precious Metals, and Eletrolytic Processes Committees, TMS 116th Ann. Meet. Denver, Colorado, Feb. 24-26, 1987, pp.195-209.

Google Scholar

[144] Echigo Y. and T. Nagai, Method for purification of sulfuric acid solution, US Patent 4559216, Dec. 17, 1985; Aus Patent AU1984025229

Google Scholar

[145] Biswas A.K. and W.G. Davenport, Extractive metallurgy of copper, Pergamon, Oxford, OX, England and Tarrytown, N.Y., 3rd edn., 1994, 500 pp.

Google Scholar

[146] Aydin F., O. Yavuz, E. Ziyadanogullari, R. Ziyadanogullari, Recovery of Copper, Cobalt, Nickel, Cadmium, Zinc and Bismuth from Electrolytic Copper Solution, Turk. J. Chem., 22 (1998), p.149–154

Google Scholar

[147] Falco G.D., Copper Electrolyte Purification Systems Expand, Eco-Tec., 2012. http://eco-tec.com/wp-content/uploads/2012/09/CopperElectroPur_Expansion.pdf

Google Scholar

[148] Shibayama R., T. Nagai, in: T. Sekine (Ed.), Solvent Extraction 1990, Elsevier, Amsterdam, 1992, p.1193–1198.

Google Scholar

[149] Biswas A.K. and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon, New York, 1979.

Google Scholar

[150] Hoffmann J.E., Process options in the treatment of copper refinery electrolyte bleed, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997, Update of The Practice of Copper Electrorefinery Bleed-Off Treatment, pp.435-451.

Google Scholar

[151] Kumar V., B.D. Pandey, A. Agarwal, D. Bagchi, S. Kumari and S.K. Sahu, Value addition in the processing of copper bleed, solution by solvent extraction process, In: Proc. Int. Solvent Extr. Conf., ISCE 2005.

Google Scholar

[152] Byszyński L., L. Garyck, I. Ewart, P. Rossi, Pilot test of EMEW® technology application to copper electrorefinery bleed streams with high arsenic content, at the KGHM Głogów II Smelter tank house bleed stream, COM 2007, International Symposium on Light Metals in Transport Applications, Ses. 61, Paper #0784

Google Scholar

[153] Dobner R.F. Bleed-off treatment of hk-secondary copper electrorefinery, In Update of the practice of copper electrorefinery bleed-off treatment, 1997 TMS Ann. Meet., Orlando, Florida, Feb. 9-13, 1997.

Google Scholar

[154] Moldoveanu G., Behavior and control in copper electrorefining, Technical Essay in the course Electrochemical Processing (306-551B), McGiII University, Canada April (1999)

Google Scholar

[155] Larouche P., Minor elements in copper smelting and electrorefining, ME Thesis, 2001, McGiII University, Montreal, Canada.

Google Scholar

[156] Bravo J.L.R., Studies on the changes of the electrolyte purification plant at Caraiba Metals, Brazil, In Copper'95-Cobre'95, vol. III: W.C. Cooper et al. (eds) Electrorefining and Hydrometallurgy of Copper, The Met. Soc. CIM, Montreal, QC, 1995, pp.315-324.

Google Scholar

[157] Cupertino D.C., P.A. Tasker, M.G. King, J. Jackson, 123rd SME Ann. Meet., Albuquerque, NM, USA, Feb. 1994a.

Google Scholar

[158] Cupertino D.C., P.A. Tasker, M.G. King, J.S. Jackson, Removal of antimony and bismuth from copper tankhouse electrolytes, Hydrometallurgy '94, Chapman & Hall for IMM-SCI, London (1994b), pp.591-600

DOI: 10.1007/978-94-011-1214-7_38

Google Scholar

[159] Rondas F., J. Scoyer and C. Geenen, Solvent extraction of arsenic with TBP – The influence of the high iron concentration on the extraction behaviour of arsenic, In Copper'95-Cobre'95, vol. III: W.C. Cooper et al. (eds) Electrorefining and Hydrometallurgy of Copper, The Met. Soc. CIM, Montreal, QC, 1995, pp.325-355.

Google Scholar

[160] Sheedy M., P. Pajunen and V. Westrom, Control of copper electrolyte impurities – Overview of the short-bed ion exchange technique and Phelps Dodge EL Paso case study, In Copper-2007, vol. V: Copper Electrorefining and Electrowinning, G.E. Houlachi, J.D. Edward, and T.G. Robinson (eds), Met Soc. CIM, Montreal, QC, 2007, pp.345-357.

Google Scholar

[161] Kim D-H., Y-H. Kim, W-S. Chung, The Effect of Arsenic on Copper Electrodeposition in Copper-Sulfate Solutions in Copper-Electrorefining, J. Korean Inst. Surf. Eng., 42. 3, 2009, pp.103-108

DOI: 10.5695/jkise.2009.42.3.103

Google Scholar

[162] Ritcey G.M. and A.W. Ashbrook, Solvent Extraction, Principles and Applications to Process Metallurgy, Part II, Elsevier, Amsterdam, (1979).

Google Scholar

[163] Buttinelli D., C. Giavarini and A. Mercanti, Proc. ISEC'83, Denver, USA, (1983), Solid Supported Liquid Membrane I, pp.422-425.

Google Scholar

[164] Togashi R. and T. Nagai, Hydrogen reduction of spent copper electrolyte, Hydromet., 11 (2), 1983, p.149–163.

DOI: 10.1016/0304-386x(83)90038-5

Google Scholar

[165] Shibasaki T., E. Ohsima, S. Ishiwata and H. Tanaka, The Electrorefining and Winning of Copper, J.E. Hoffman, R.G. Bautista, V.A. Ettel, V. Kudryk, and R.J. Wesel (eds.), AIME, Pennsylvania, (1987) pp.223-237.

Google Scholar

[166] Toyabe K., C. Segawa and H. Sato, Impurity control of electrolytr at Sumito Niihama copper refinery, The Electrorefining and Winning of Copper, 16th TMS Ann. Meet., Feb. 24, 1987, Devner, CO, J.E. Hoffman, R.G. Bautista, V.A. Ettel, V. Kudryk, and R.J. Wesel (eds.), AIME, Pennsylvania, (1987) pp.117-128.

Google Scholar

[167] Agarwal A., B.D. Pandey, V. Kumar and Premchand, Proc. Seminar Recovery of Valuable By-products from Intermediate Secondaries in Nonferrous Industries, Ghatsila, India, (1996) pp.36-43.

Google Scholar

[168] Littlejohn P., Technical Review – Copper Solvent Extraction in Hydrometallurgy, MTRL 557, Dec. 2007, Submitted to Dr. David Dreisinger.

Google Scholar

[169] Nyirenda, R. L. and Phiri, W. S., The removal of nickel from copper electrorefining bleed-off electrolyte, Min. Eng., 11(1), 1998, p.23–27.

DOI: 10.1016/s0892-6875(97)00136-2

Google Scholar

[170] Agarwal et al., 2006 Agrawal, A., Kumari, S., Bagchi, D., Kumar, V., and Pandey, B. D., Hydrogen reduction of copper bleed solution from an Indian copper smelter for producing high purity copper powders, Hydromet., 84, 2006, p.218–224.

DOI: 10.1016/j.hydromet.2006.05.010

Google Scholar

[171] Kumari S., A. Agrawal, D. Bagchi, B.D. Pandey, and V. Kumar, Synthesis of copper metal/salts from copper bleed solution of a copper plant, Min. Process. Extr. Met. Rev., 27(2), 2006, p.159–175.

DOI: 10.1080/08827500600563376

Google Scholar

[172] Agrawal A., S. Kumari, D. Bagchi, V. Kumar, and B.D. Pandey, Recovery of copper powder from copper bleed electrolyte of an Indian copper smelter by electrolysis, Min. Eng., 20, 2007, p.95–97.

DOI: 10.1016/j.mineng.2006.05.001

Google Scholar

[173] Agrawal A., D. Bagchi, S. Kumari, V. Kumar, and B.D. Pandey, Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis, Powder Technol., 177, 3, 2007. pp.133-139.

DOI: 10.1016/j.powtec.2007.03.032

Google Scholar

[174] Agrawal A., D. Bagchi, S. Kumari and B.D. Pandey, An overview of process options and behavioral aspects of the copper values recovered from the copper bleed stream of a copper smelter developed at the National Metallurgical Laboratory, Min. Process. Extr. Met. Rev., 30 (2), 2009, pp.136-162

DOI: 10.1080/08827500802397243

Google Scholar

[175] Schwab W., H. Kroke, in: R.G. Reddy, J.L. Hendrix, P.B. Queneau (Eds.), Arsenic Metallurgy Fundamentals and Applications, TMS-AIME, Warrendale, 1988, p.249–262.

Google Scholar

[176] Navarro P. and F.J. Alguacil, Removal of arsenic from copper electrolytes by solvent extraction with tributylphosphate, Can. Met. Q., 35 (2) (1996), pp.133-141.

DOI: 10.1179/cmq.1996.35.2.133

Google Scholar

[177] Schulze R., Process for preventing supersaturation of electrolytes with arsenic, antimony and bismuth, US Patent 3696012, Oct. 3, (1972)

Google Scholar

[178] Eguez H.E., E.H. Cho, Adsorption of arsenic on activated charcoal, JoM, 39 (7) (1987), pp.38-41

DOI: 10.1007/bf03258040

Google Scholar

[179] Gabai B., N.A.A. dos Santos, D.C.S. Azevêdo, S. Brandani and C.L. Cavalcante Jr., Removal of copper electrolyte contaminants by adsorption, Braz. J. Chem. Eng.,  14, 3, (1997)

DOI: 10.1590/s0104-66321997000300002

Google Scholar

[180] Cefuentes L., G. Crisosmtomo, J.P. Ibanez, J.M. Casa, F. Alvarez, G. Cifeuentes, On the electrodialysis of aqueous H2SO4–CuSO4 electrolytes with metallic impurities, J. Memb. Sci., 207, 1, 2002, pp.1-16.

DOI: 10.1016/s0958-2118(02)01036-4

Google Scholar

[181] Cifuentes L., R. Glasner, J.M. Casas, Aspects of the development of a copper electrowinning cell based on reactive electrodialysis. Chem. Eng. Sci., 59, 2003, p.1087–1101.

DOI: 10.1016/j.ces.2003.12.013

Google Scholar

[182] Cifuentes, L., C. Mondaca, J.M. Casas, The effectiveness of membrane systems for the separation of anolyte and catholyte in a labscale copper electrowinning cell based on reactive electrodialysis. Min. Eng., 17, 2004, p.803–809.

DOI: 10.1016/j.mineng.2004.01.010

Google Scholar

[183] Cifuentes, L., and Casa, J.M., Advances in the treatment of CuSO4-H2SO4-As-Sb-H2O solutions by electrodialysis, CIM Bull.,  97, 1081, 2004.

Google Scholar

[184] McKevitt B.R., Removal of iron by ion exchange from copper electrowinning electrolyte solutions containing antimony and bismuth, M.E. Thesis, 2007, Univ. British Columbia

DOI: 10.1016/j.hydromet.2009.04.007

Google Scholar

[185] Halle O., W. Podszun and B. Hees, Process for Purifying Sulphuric Acids, US Patent Appl. 20080229882, Sep. 25, (2008)

Google Scholar

[186] Riveros P.A., J.E. Dutrizac, R. Lastra, A study of the ion exchange removal of antimony(III) and antimony(V) from copper electrolytes, Can. Met. Q., 47 (3) (2008), p.307–315

DOI: 10.1179/cmq.2008.47.3.307

Google Scholar

[187] Baradel A., R. Guerriero, L. Meregalli, I. Vittadini, Extraction of As from Copper Refining Electrolyte, JoM, 38 (2) 1986, pp.32-37.

DOI: 10.1007/bf03257918

Google Scholar

[188] Dreisinger D.B., B.J.Y. Leong, B.J. Balint, M.H. Beyad, The solvent extraction of As, Sb and Bi from copper refining electrolytes using organophosphorous reagents, in: D.H. Logsdail, M.J. Slater (Eds.), Solvent Extraction in the Process Industries, Vol. 3, Elsevier for SCI, London, 1993, p.1271–1278.

Google Scholar

[189] Dreisinger D.B., B.J.Y. Leong, I. Grewal, Recent advances in solvent extraction and ion exchange of As, Sb and Bi from copper refinery electrolytes, in: B. Harris, E. Krause (Eds.), Impurity Control and Disposal in Hydrometallurgical Processes, The Metallurgical Society of the CIMMP, Montreal, 1994, p.71–89.

Google Scholar

[190] Dreisinger D.B., B.J.Y. Leong, Method for selectively removing antimony and bismuth from sulphuric acid, US Patent 053667158, Nov. 22, 1994.

Google Scholar

[191] Dreisinger D. and B.J.Y. Scholey, Ion exchange removal of antimony and bismuth from copper refinery electrolytes, Copper, Santiago, Chile, 26-29 Nov. 1995. Ed. W.C. Cooper, D.B. Dreisinger, J.E. Dutrizac, H. Hein, and G. Ugarte. Montreal, Quebec: Canadian Institute of Mining Metallurgy and Petroleum, 1995. pp.305-314.

Google Scholar

[192] Sato H., Method of removing antimony from an antimony-containing copper electrolyte, US Patent 4444666, Apr 24, (1984)

Google Scholar

[193] Petkova E.N. and H. Vassilev, The kinetics of antimony(III) sorption on inorganic ion exchangers for its removal fromcopper refining electrolytes, Hydromet., 8, 2, 1982, pp.185-191

DOI: 10.1016/0304-386x(82)90044-5

Google Scholar

[194] Petkova E.N. and H. Vassilev, Mechanism of antimony(III) sorption on β-stannic acid, Hydromet., 10, 3, 1983, p.391–396.

DOI: 10.1016/0304-386x(83)90067-1

Google Scholar

[195] Leng Y., W. Guo, S. Su, Removal of antimony(III) from aqueous solution by graphene as an adsorbent , Chem. Eng. J., 211-212 (2012) p.406–411

DOI: 10.1016/j.cej.2012.09.078

Google Scholar

[196] Petkova E.N. and H. Vassilev, Mechanism of antimony(III) sorption on β-stannic acid, Hydromet., 10, 3, 1983, p.391–396.

DOI: 10.1016/0304-386x(83)90067-1

Google Scholar

[197] Ando K., A. Fukui and N. Tsuchida, Method of recovering antimony and bismuth from copper electrolyte, US 6153081 A, Nov. 28, (2000)

Google Scholar

[198] Aydin F., O. Yavuz, E. Ziyadanogullari, R. Ziyadanogullari, Recovery of Copper, Cobalt, Nickel, Cadmium, Zinc and Bismuth from Electrolytic Copper Solution, Turk. J. Chem., 22 (1998), pp.149-154.

Google Scholar

[199] Tomita M., H. Hiai, T. Ishii, Method of purifying copper electrolyteic solution, U.S. Patent No 5,783,057, July 21, 1998.

Google Scholar

[200] Hassler C.R. and C.F. Whitehead, Use of a rare earth for the removal of antimony and bismuth, USP Application 20100258448, Oct 14, (2010)

Google Scholar

[201] Ciffuentes G., J. Simpson, C. Vargas, New process for the precipitation of Sb and Bi from copper electrolytes with PbO2, T.T. Chen Hon. Symp. Hydrometallurgy, Electrometallurgy and Materials Characterization. S. Wang, J.E. Dutrizac, F.I. Free, J.Y. Hwang and D. Kim (eds), Wiley/TMS, 2012, pp.125-801; WO 2012080988 A4, May 23, (2013)

DOI: 10.1002/9781118364833.ch10

Google Scholar

[202] Xiao F.X., Y.J. Zheng, Y. Wang, H.S. Jian, C.H. Li, W. Xu, Y.T. Ma, Preparation of copper arsenite and its application in purification of copper electrolyte, Trans. Nonferrous Met. Soc. China, 18 (2) (2008), p.474–479.

DOI: 10.1016/s1003-6326(08)60084-9

Google Scholar

[203] Xiao F.X., Y.J. Zheng, Y. Wang, H.S. Jian, X.G. Huang, Y.T. Ma, Purification mechanism of copper electrolyte by As(III), Trans. Nonferrous Met. Soc. China, 18 (5) (2008), p.1275–1279.

DOI: 10.1016/s1003-6326(08)60216-2

Google Scholar

[204] Xiao F-x., D. Cao, J-w. Mao, X-n. Shen, F-z. Ren, Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes, Int. J. Min. Met. Mat., 20, 1, 2013, pp.9-16

DOI: 10.1007/s12613-013-0687-6

Google Scholar

[205] Baipeisova B.S., M.Z. Ugorets and Z.M. Tokaeva, Influence of acidity on the degree of precipitation of arsenic(V) from solutions by titanium(IV) hydroxide, J. Appl. Chem. USSR (Engl. Transl) 59:6, 1986; Translated from Zh. Prikl. Khim. 59, 6, 1986, pp.1316-1318 (in Russian).

Google Scholar

[206] Rajput R.P.S. and N.S. Seth, Chromatographic behaviour of metal ions on tin(IV) and titanium(IV) antimonate papers, Chromatograph., 13, 4, 1980, pp.219-222

DOI: 10.1007/bf02261875

Google Scholar