[1]
M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta biomater. 8 (2012) 3888-3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[2]
M. Geetha, A.K. Singh, R. Asokamani, A. k. Gogia, Ti based biomaterials, the ultimate choice for orthopeadic implants- A review, Prog. Mater. Sci. 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[3]
Y.Q. Wang, J. Tao, J.L. Zhang, T. Wang, Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composites, Trans. Nonferrous Met. Soc. China. 21 (2011) 1074-1079.
DOI: 10.1016/s1003-6326(11)60824-8
Google Scholar
[4]
A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, Biomimetics, Learning from Nature, Intech, (2010).
DOI: 10.5772/8787
Google Scholar
[5]
A. Mansourighasri, N. Muhamad, A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol. 212 (2012) 83-89.
DOI: 10.1016/j.jmatprotec.2011.08.008
Google Scholar
[6]
W. Xiaopeng, C. Yuyong, X. LiJuan, X. Shulong, K. Fantao, K.D. Woo, Ti–Nb–Sn–hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering, J. Mech. Behav. Biomed. Mater. 4 (2011) 2074-(2080).
DOI: 10.1016/j.jmbbm.2011.07.006
Google Scholar
[7]
K. Niespodziana, K. Jurczyk, M. Jurczyk, Titanium – silica nanocomposites: prepration and characterization, Arch. Metall. Mater. 53 (2008) 875-880.
Google Scholar
[8]
P. Khoshakhlagh, F. Moztarzadeh, S.M. Rabiee, R. Moradi, P. Heidari, R. Ravarian, S. Amanpour, Bioglass/Chitosan Composite as a New Bone Substitute, Advances in bioceramics and porous ceramics III. 31 (2010) 39-46.
DOI: 10.1002/9780470944028.ch4
Google Scholar
[9]
M.U. Jurczyk, K. Jurczyk, A. Miklaszewski, M. Jurczyk, Nanostructured titanium-45S5 Bioglass scaffold composites for medical applications, Mater. Des. 32 (2011) 4882-4889.
DOI: 10.1016/j.matdes.2011.06.005
Google Scholar
[10]
K. Jurczyk, K. Niespodziana, M.U. Jurczyk, M. Jurczyk, Synthesis and characterization of titanium-45S5 Bioglass nanocomposites , Mater. Des. 32 (2011) 2554-2560.
DOI: 10.1016/j.matdes.2011.01.047
Google Scholar
[11]
A. Nouri, P.D. Hodgson, C. Wen, Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy, Mater. Sci. Eng. C 31 (2011) 921-928.
DOI: 10.1016/j.msec.2011.02.011
Google Scholar
[12]
M. Razavi, M.R. Rahimipour, R. Mansoori, Synthesis of TiC–Al2O3 nanocomposite powder from impure Ti chips, Al and carbon black by mechanical alloying, J. Alloys Compd. 450 (2008) 463–467.
DOI: 10.1016/j.jallcom.2006.11.013
Google Scholar
[13]
Z. Khodsiani, H. A. Mansuri, T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina , Powder. Tech. 245 (2013) 7-12.
DOI: 10.1016/j.powtec.2013.04.010
Google Scholar
[14]
T. Mousavi, F. Karimzadeh, M.H. Abbasi, Synthesis and characterization of nanocrystallineNiTi intermetallic by mechanical alloying, Mater. Sci. Eng. A 487 (2008) 46–51.
DOI: 10.1016/j.msea.2007.09.051
Google Scholar
[15]
Y.J. Chen, B. Feng, Y.P. Zhu, J. Weng, J.X. Wang, X. Lu, Fabrication of porous titanium implants with biomechanical compatibility, Mater. Lett. 63 (2009) 2659-2661.
DOI: 10.1016/j.matlet.2009.09.029
Google Scholar
[16]
N. Wenjuan, B. Chenguang, Q. GuiBao, W. Qiang, Processing and properties of porous titanium using space holder technique, Mater. Sci. Eng. A 506 (2009) 148-151.
Google Scholar