Mechanical Properties Improvement of Porous Titanium-Bioglass Nanocomposites by Mechanical Alloying

Article Preview

Abstract:

In this study, porous titanium-10 wt.% bioglass nanocomposites were fabricated by the combination of mechanical alloying and a space holder sintering process. The mixed powders were mechanically alloyed for 15 h. The blended Ti-Bioglass was mixed with 30 wt.% carbamide as a space holder. The mixtures were uniaxially pressed and finally, the green compacts sintered at 1150°C for 5 hours. The porous structures are characterized by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The mechanical properties were examined using micro hardness and compression tests. The investigation revealed that after 15 h of milling, the Bioglass dissolved in Ti lattice. Also, results show that nanostructured Ti-10 wt.% Bioglass with 31.5 nm crystallite size possess greater hardness compared to respective microcrystalline titanium and desirable compressive strength for using in biomedical application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-323

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta biomater. 8 (2012) 3888-3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[2] M. Geetha, A.K. Singh, R. Asokamani, A. k. Gogia, Ti based biomaterials, the ultimate choice for orthopeadic implants- A review, Prog. Mater. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[3] Y.Q. Wang, J. Tao, J.L. Zhang, T. Wang, Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composites, Trans. Nonferrous Met. Soc. China. 21 (2011) 1074-1079.

DOI: 10.1016/s1003-6326(11)60824-8

Google Scholar

[4] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, Biomimetics, Learning from Nature, Intech, (2010).

DOI: 10.5772/8787

Google Scholar

[5] A. Mansourighasri, N. Muhamad, A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol. 212 (2012) 83-89.

DOI: 10.1016/j.jmatprotec.2011.08.008

Google Scholar

[6] W. Xiaopeng, C. Yuyong, X. LiJuan, X. Shulong, K. Fantao, K.D. Woo, Ti–Nb–Sn–hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering, J. Mech. Behav. Biomed. Mater. 4 (2011) 2074-(2080).

DOI: 10.1016/j.jmbbm.2011.07.006

Google Scholar

[7] K. Niespodziana, K. Jurczyk, M. Jurczyk, Titanium – silica nanocomposites: prepration and characterization, Arch. Metall. Mater. 53 (2008) 875-880.

Google Scholar

[8] P. Khoshakhlagh, F. Moztarzadeh, S.M. Rabiee, R. Moradi, P. Heidari, R. Ravarian, S. Amanpour, Bioglass/Chitosan Composite as a New Bone Substitute, Advances in bioceramics and porous ceramics III. 31 (2010) 39-46.

DOI: 10.1002/9780470944028.ch4

Google Scholar

[9] M.U. Jurczyk, K. Jurczyk, A. Miklaszewski, M. Jurczyk, Nanostructured titanium-45S5 Bioglass scaffold composites for medical applications, Mater. Des. 32 (2011) 4882-4889.

DOI: 10.1016/j.matdes.2011.06.005

Google Scholar

[10] K. Jurczyk, K. Niespodziana, M.U. Jurczyk, M. Jurczyk, Synthesis and characterization of titanium-45S5 Bioglass nanocomposites , Mater. Des. 32 (2011) 2554-2560.

DOI: 10.1016/j.matdes.2011.01.047

Google Scholar

[11] A. Nouri, P.D. Hodgson, C. Wen, Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy, Mater. Sci. Eng. C 31 (2011) 921-928.

DOI: 10.1016/j.msec.2011.02.011

Google Scholar

[12] M. Razavi, M.R. Rahimipour, R. Mansoori, Synthesis of TiC–Al2O3 nanocomposite powder from impure Ti chips, Al and carbon black by mechanical alloying, J. Alloys Compd. 450 (2008) 463–467.

DOI: 10.1016/j.jallcom.2006.11.013

Google Scholar

[13] Z. Khodsiani, H. A. Mansuri, T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina , Powder. Tech. 245 (2013) 7-12.

DOI: 10.1016/j.powtec.2013.04.010

Google Scholar

[14] T. Mousavi, F. Karimzadeh, M.H. Abbasi, Synthesis and characterization of nanocrystallineNiTi intermetallic by mechanical alloying, Mater. Sci. Eng. A 487 (2008) 46–51.

DOI: 10.1016/j.msea.2007.09.051

Google Scholar

[15] Y.J. Chen, B. Feng, Y.P. Zhu, J. Weng, J.X. Wang, X. Lu, Fabrication of porous titanium implants with biomechanical compatibility, Mater. Lett. 63 (2009) 2659-2661.

DOI: 10.1016/j.matlet.2009.09.029

Google Scholar

[16] N. Wenjuan, B. Chenguang, Q. GuiBao, W. Qiang, Processing and properties of porous titanium using space holder technique, Mater. Sci. Eng. A 506 (2009) 148-151.

Google Scholar