[1]
Cogan, S.F., Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng. 10 (2008) 275–309.
DOI: 10.1146/annurev.bioeng.10.061807.160518
Google Scholar
[2]
Grill, W.M., Norman, S.E., Bellamkonda, R.V., Implanted neural interfaces: biochallenges and engineered solutions, Annu. Rev. Biomed. Eng. 11 (2009) 1-24.
DOI: 10.1146/annurev-bioeng-061008-124927
Google Scholar
[3]
Abidian, M.R., Martin, D.C., Conducting-Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes, NIH public access. 6 (2010) 421–429.
DOI: 10.1002/smll.200901868
Google Scholar
[4]
Rui, Y., Liu, J., Wang, Y., Yang, C., Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces, Microsyst Technol. 17 (2011) 437–442.
DOI: 10.1007/s00542-011-1279-x
Google Scholar
[5]
Luo, X., Weaver, C.L., Zhou, D., Greenberg, R., Cui, X.T., Highly stable carbon nanotube doped poly(3, 4 -ethylenedioxythiophene) for chronic neural stimulation, Biomaterials. 32 (2011) 5551-5557.
DOI: 10.1016/j.biomaterials.2011.04.051
Google Scholar
[6]
Yi Lu, Li, Y., Pan, J., Wei, P., Liu, N., Wu, B., Cheng, J., Lu, C., Wang, L., Poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode neural tissue interface in optogenetics, Biomaterials. 33 (2012).
DOI: 10.1016/j.biomaterials.2011.09.083
Google Scholar
[7]
He, W., Bellamkonda, R. V., Nanoscale neuro-integrative coatings for neural implants, Biomaterials. 26 (2005) 2983–2990.
DOI: 10.1016/j.biomaterials.2004.08.021
Google Scholar
[8]
Zhou, H.B., Li, G., Sun, X.N., Zhu, Z.H., Jin, Q.H., Zhao, J.L., Ren, Q.S., Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces, J. Microelectromech. Syst. 18 (2009) 18-24.
DOI: 10.1109/jmems.2008.2011122
Google Scholar
[9]
Liu, X., Yue, Z., Higgins, M.J., Wallace, G.G., Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing, Biomaterials. 32 (2011) 7309-7317.
DOI: 10.1016/j.biomaterials.2011.06.047
Google Scholar
[10]
G. Yang, L. Li, J. Jiang, Y. Yang, Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid, Mater. Sci. Eng., C. 32 (2012).
DOI: 10.1016/j.msec.2012.04.004
Google Scholar
[11]
R. M. Herna, L. Richter, S. Semancik, S. Stranick, T. E. Mallouk, Template fabrication of protein-functionalized gold-polypyrrole-gold segmented nanowires, ACS. 16 (2004) 3431–3438.
DOI: 10.1021/cm0496265
Google Scholar
[12]
C. M. Li, C. Q. Sun, W. Chen, L. Pan, Electrochemical thin film deposition of polypyrrole on different substrates, Surf. Coat. Technol. 198 (2005) 474–477.
DOI: 10.1016/j.surfcoat.2004.10.065
Google Scholar
[13]
Abidian, M.R., Martin, D.C., Multifunctional nanobiomaterials for neural interfaces, Adv. Funct. Mater. 19 (2009) 573–585.
DOI: 10.1002/adfm.200801473
Google Scholar