Influence of Deposition Voltage on Growth of ZnO Nanowires by Cathodic Electrodeposition

Article Preview

Abstract:

Zinc oxide nanowires (NWs) were synthesized by potentio-static cathodic electrodepsition in polycarbonate (PC) template at 70 °C. The electro-reduction of hydroxide ions in presence of Zn2+ ions within Zn (NO3)2 is involved in the growth of nanowire arrays. Altering various deposition parameters such as deposition voltage made it possible to obtain arrays of vertically aligned ZnO NWs with different growth rates. Furthermore, the effect of voltage on the chronoamperometric diagrams was studied. The X-ray diffraction pattern clearly confirms the polycrystalline nature of the ZnO NWs; however, Scanning Electron Microscopy (SEM) images reveal that the length of NWs slightly increases by increasing deposition voltage. It is demonstrated that varying deposition voltage has a significant impact on the growth rate but a small changes of the size of NWs is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

732-736

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature, Sens. Actuators, 144 (2010) 56–66.

DOI: 10.1016/j.snb.2009.10.038

Google Scholar

[2] Z. L. Wang, ZnO nanowire and nanobelt platform for nanotechnology, Mater. Sci. Eng., 64 (2009) 33-71.

Google Scholar

[3] A.B. Djurisi, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Mater Sci., 34 (2010) 191 – 259.

Google Scholar

[4] Z. L. Wang, X. Doung, J. Zhou, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6 (2006) 2768–2772.

DOI: 10.1021/nl061802g

Google Scholar

[5] Z. Fan, D. Wang, P.C. Chang, P.C. Chang, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett., 85 (2004) 5923-5927.

DOI: 10.1063/1.1836870

Google Scholar

[6] J. Zhou, N.S. Xu, Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids, Adv. Mater., 18 (2006) 2432–2435.

DOI: 10.1002/adma.200600200

Google Scholar

[7] Y.J. Li, K.M. Li, C.Y. Wang, C.I. Kuo, L.J. Chen, Low-temperature electrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensing properties, Sens. Actuators, 161 (2012) 734– 739.

DOI: 10.1016/j.snb.2011.11.024

Google Scholar

[8] Y.L. Wang, A.Y. Ouslim, G.Y. Wang, Structure study of electrodeposited ZnO nanowires, Microelectron. J., 36 (2005) 625–628.

DOI: 10.1016/j.mejo.2005.04.033

Google Scholar

[9] X.Y. Kong, L.W. Zhong, Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals, Appl. Phys. Lett., 84 (2004) 975 – 977.

DOI: 10.1063/1.1646453

Google Scholar

[10] D. Pradhan, S. Sindhwani, K.T. Leung, Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition, Nanoscale Res Lett., 5 (2010) 1727–1736.

DOI: 10.1007/s11671-010-9702-2

Google Scholar

[11] C.X. Xu, X.W. Sun, Z.L. Dong, M.B. Yu, Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport, Cryst. Growth, 270 (2004) 498–504.

DOI: 10.1016/j.jcrysgro.2004.07.010

Google Scholar

[12] S. W Kim, S. Fujita, ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles, Appl. Phys. Lett., 86 (2005) 159-162.

DOI: 10.1063/1.1883320

Google Scholar

[13] M. Gupta, D. Pinisetty, J. C. Flake, J. J. Spivey, Pulse electrodeposition of Cu–ZnO and Mn–Cu–ZnO nanowires, Electrochem. Soc., 157 (2010) 473-478.

DOI: 10.1149/1.3456627

Google Scholar

[14] J. Wang, L. Gao, Hydrothermal synthesis and photoluminescence properties of ZnO nanowires, Solid State Commun., 132 (2004) 269–271.

DOI: 10.1016/j.ssc.2004.07.052

Google Scholar

[15] M.R. Khajavi, D.J. Blackwood, G. Cabanero, R. Tena-Zaera, New insight into growth mechanism of ZnO nanowires electrodeposited from nitrate-based solutions, Electrochim. Acta, 69 (2012) 181– 189.

DOI: 10.1016/j.electacta.2012.02.096

Google Scholar

[16] S. Sun, S. Jiao, K. Zhang, D. Wang, S. Gao, H. Li, Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aqueous zinc nitrate baths, Journal of Cryst. Growth, 359 (2012) 15–19.

DOI: 10.1016/j.jcrysgro.2012.08.016

Google Scholar

[17] S.K. Chakarvarti, Track-etch membranes enabled nano-/microtechnology: A review, Radiat. Meas., 44 (2009) 1085–1092.

DOI: 10.1016/j.radmeas.2009.10.028

Google Scholar

[18] Y. Bahari, M. Ghorbani, A. Dolati, Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles, Electrochim. Acta, 75 (2012) 157–163.

DOI: 10.1016/j.electacta.2012.04.119

Google Scholar

[19] A. Goux, T. Pauport´, J. Chivot, D. Lincot, Temperature effects on ZnO electrodeposition, Electrochim. Acta, 50 (2005) 2239–2248.

DOI: 10.1016/j.electacta.2004.10.007

Google Scholar