Removal of Copper from Industrial Water and Wastewater Using Magnetic Iron Oxide Nanoparticles Modified with Benzotriazole

Article Preview

Abstract:

This paper shows effective removal of copper from water and industrial wastewater by modified magnetic nanoparticle with benzotriazole as an efficient adsorbent. The method is fast, simple, cheap, effective and safe for treatment of copper polluted waters. Non-modified magnetic iron oxide nanoparticles (MIONPs) can adsorb up to 49.6% of 50 ng ml-1 of Cu (ΙΙ) ions from polluted water, but modified magnetic nanoparticles improved the efficiency up to 99.7% for same concentration. The required time for complete removal of copper ions was 5 minutes. Variation of pH and high electrolyte concentration (NaCl) of the solution do not have considerable effect on the copper removal efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

742-746

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sarioglu, U. A. Atay, Y. Cebeci, Desalination 181 (2005) 303.

Google Scholar

[2] H. Yong-Mei, C. Man, H. Zhong-Bo, J. Hazard. Mater. 184 (2010) 392.

Google Scholar

[3] Y. Mido, M. Satake, Chemicals in the Environment, Discovery Publishing House, New Delhi, (1995).

Google Scholar

[4] J.S. Espana, E.L. Pamo, E.S. Pastor, J.R. Andres, J.A.M. Rubi, The removal of dissolved metals by hydroxysulphate during oxidation and neutralization of acid mine waters, Aquat. Geochem. 12(2006) 269-298.

DOI: 10.1007/s10498-005-6246-7

Google Scholar

[5] M.G. de Fonseca, M.M. de Olivera, L.N.H. Arakaki, J.G.P. Espinola, C. Airoldi, Nat-ural vermiculite as an exchanger support for heavy cations in aqueous solution, J. Colloid Interface Sci. 285(2005) 50-55.

DOI: 10.1016/j.jcis.2004.11.031

Google Scholar

[6] O. Arous, A. Gherrous, H. Kerdjoudj, Removal of Ag(Ι), Cu(ΙΙ) and Zn(ΙΙ) ions with a supported liquid membrane containing cryptands as carriers, Desalination 161(2004) 295-303.

DOI: 10.1016/s0011-9164(03)00711-2

Google Scholar

[7] U.B. Ogutveren, S. Koparal, E. Ozel, Electrodialysis for the removal of copper ions from wastewater, J. Environ. Sci. Health A 32(1997) 749-761.

Google Scholar

[8] S.H. Hasan, P. Srivastava, Batch and countinuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp, J. Environ. Manage. 90(2009) 3313-3321.

DOI: 10.1016/j.jenvman.2009.05.005

Google Scholar

[9] Y. Sag, Y. Aktay, Kinetic studies on sorption of Cr(ΙV) and Cu(ΙΙ) ions by chitin, chitosan and Rhizopus arrhizus, Biochem. Eng.J. 12(2002) 143-153.

DOI: 10.1016/s1369-703x(02)00068-2

Google Scholar

[10] J.C. Zheng, H.M. Feng, M.H.W. Lam, P.K.S. Lam, Y.W. Ding, H.Q. Yu, Removal of Cu(ΙΙ) in aqueous media by biosorption using water hyacinth roots as a biosorbent material, J. Hazard. Mater. 177(2009) 780-785.

DOI: 10.1016/j.jhazmat.2009.06.078

Google Scholar

[11] S.S. Banerjee R.V. Jayaram, M.V. Joshi, RemovL OF Cr(VΙ) and Hg(ΙΙ) from aqueous solutions using fly ash and impregnated fly ash, Sep. Sci. Technol. 39 (2004) 1611-1629.

DOI: 10.1081/ss-120030778

Google Scholar

[12] S.M. Zhu, N. Yang, D. Zhang, Poly(N, N-dimethylaminoethyl metacrylate)modification of activated carbon for copper ions removal, Mater. Chem. Phys. 113(2009) 784-789.

DOI: 10.1016/j.matchemphys.2008.08.025

Google Scholar

[13] G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol. 58(2007) 224-231.

DOI: 10.1016/j.seppur.2006.12.006

Google Scholar

[14] A.H. Chen, S.C. Liu, C.Y. Chen, Comparative adsorption of Cu(ΙΙ), Zn(ΙΙ), and Pb(ΙΙ) ions in aqueous solution on the crosslinked chitosan whit epichlorohydrin, J. Hazard. Mater. 154(2008) 184-191.

DOI: 10.1016/j.jhazmat.2007.10.009

Google Scholar

[15] S.R. Shukla, V.G. Gaikar, R.S. Pai, U.S. Suryavanshi, Batch and column adsorption of Cu(ΙΙ) on unmodified and oxidized coir, Sep. Sci. Technol. 44(2009) 40-62.

DOI: 10.1080/01496390802281984

Google Scholar

[16] P. Yin, Q. Xu, R.J. Qu, G.F. Zhao, Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent, J. Hazard. Mater. 169(2009) 228-232.

DOI: 10.1016/j.jhazmat.2009.03.081

Google Scholar

[17] M. Dogan, A. Turkylmaz, M. Alkan, O. Demirbas, Adsorption of copper(ΙΙ) ions onto sepiolite and electrokinetic properties, Desalination 238(2009) 257-270.

DOI: 10.1016/j.desal.2008.02.017

Google Scholar

[18] M. Yavuz, F. Gode, E. Pehlivan, S. Ozmert, Y.C. Sharma, An economic removal of Cu2+ and Cr3+ on the new adsorbents: pumice and polyacrylonitrile/pumice composite, Chem. Eng. J. 137(2008) 453-461.

DOI: 10.1016/j.cej.2007.04.030

Google Scholar

[19] R. Rangsivek, M.R. Jekel, Removal of dissolved metals by zero-valent iron(ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res. 39(2005) 4153-4163.

DOI: 10.1016/j.watres.2005.07.040

Google Scholar

[20] L.C. Zhou, Y.F. Li, X. Bai, G.H. Zhao, Use of microorganisms immobilized on com posite polyurethane foam to remove Cu(ΙΙ) from aqueous solution, J. Hazard. Mater. 167(2009) 1106-1113.

DOI: 10.1016/j.jhazmat.2009.01.118

Google Scholar

[21] D. Turkmem, E. Yilmaz, N. Ozturk, S. Akgol, A. Denizli, poly(hydroxyethylmethacrylate) nanobeads containing imidazole groups for removal of Cu(ΙΙ) ions, Mater. Sci. Eng. C 29 (2009) 2072-(2078).

DOI: 10.1016/j.msec.2009.04.005

Google Scholar

[22] H. Parham, B. Zargar, R. Shiralipour, J. Hazard. Mater. 205-206 (2012) 94-100.

Google Scholar

[23] J. J. Kim, S. K. Kim, J. U. Bae. Thin Solid Films 415 (2002) 101–107.

Google Scholar

[24] J.H. Jang, H.B. Lim, J. Microchem. 94 (2010) 148–158.

Google Scholar

[25] Standard methods for the examination of water and wastewater 20th edition-3500 Cu B-Neocoproine method.

Google Scholar