The Interaction between Particles and a Plasma Beam in the Thermal Projection Process

Article Preview

Abstract:

Plasma spray processes have been widely used to produce high performance coatings of a wide range of Materials (metallic, non-metallic, ceramics), offering protection from, eg. wear, extreme temperature, chemical attack and environmental corrosion. To obtain good quality coatings, spray parameters must be carefully selected. Due to the large variety in process parameters, it is difficult to optimize the process for each specific coating and substrate combinations. Furthermore modelling the spray process allows a better understanding of the process sequences during thermal spraying. Good agreement of the virtual spraying process with the real coating formation is achieved by modelling the particular process steps. The simulation of coating formation to estimate the process parameters is an important tool to develop new coating structures with defined properties. In this work, the process of plasma sprayed coating has been analyzed by numerical simulation. Commercial code is used to predict the plasma jet characteristics, plasma –particle interaction, and coating formation. Using this model we can obtain coating microstructure and characteristics which form a foundation for further improvement of an advanced ceramic coating build up model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

801-809

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liu H., Lavernia E., Rangel R., <Numerical simulation of impingement of molten Ti, Ni and W droplets on a flat substrate >, J. Thermal spray Technology, vol. 2, 1993, pp.369-378.

DOI: 10.1007/bf02645867

Google Scholar

[2] M. Vardelle et al. (University of Limoges, France. ) Plasma Chem. Plasma Processes, 11(2) 185 (1991)- Metal Powder Report, 47(6) 49 (1992).

Google Scholar

[3] P. Fauchais, A. Vardelle, M. Vardelle, J. F. Coudert and J. Lesinski Thin Solid Films 121 (4), 303 (1984).

DOI: 10.1016/0040-6090(84)90058-0

Google Scholar

[4] E. Pfender Surface and Coatings Technology 34 (1), 1 (1988).

Google Scholar

[5] Gilles Mariaux, and Armelle Vardelle International Journal of Thermal Sciences 44 (4), 357(2005).

Google Scholar

[6] E. Lugscheider, C. Barimani, P. Eckert and U. Eritt Computational Materials Science 7(1-2), 109 (1996).

Google Scholar

[7] P. Fauchais, A. Vardelle and M. Vardelle Ceramics International 17 (6), 367-379 (1991).

DOI: 10.1016/0272-8842(91)90035-x

Google Scholar

[8] H1RT C. W., NICHOLS B. D., < Volume of fluid (VOF) method for the dynamics of free boundaries >, J. Compur. Phys., vol. 39, 1981, pp.201-211.

Google Scholar

[9] P. C. Huang, J. Heberlein and E. Pfender Surface and Coatings Technology 73 (3), 142 (1995).

Google Scholar

[10] E. Pfender Thin Solid Films 238 (2), 228 (1994).

Google Scholar

[11] PASANDIDEH-FARD M., MOSTAGHIMI J., Droplet impact and solidification in a thermal spray process: droplet-substrate interaction, Practical Sol ution in Engineering Problems, 1996, pp.637-646.

DOI: 10.31399/asm.cp.itsc1996p0637

Google Scholar

[12] F. Gitzhofer, A. Vardelle, M. Vardelle and P. Fauchais Materials Science and Engineering A, 147(1) 107(1991).

DOI: 10.1016/0921-5093(91)90811-z

Google Scholar

[13] G. Bonizzoni and E. Vassallo Vacuum, 64 (3-4) 327-336 (2002).

Google Scholar

[14] Pierre Fauchais, Ghislain Montavon, Michel Vardelle and Julie Cedelle Surface and Coatings Technology 201 (5), 1908 (2006).

DOI: 10.1016/j.surfcoat.2006.04.033

Google Scholar

[15] P. Fauchais and A. Vardelle International Journal of Thermal Sciences 39(9-11), 852(2000).

Google Scholar

[16] E. Lugscheider and R. Nickel Surface and Coatings Technology, 174-175, 475 (2003).

Google Scholar

[17] Z. R. Ismagilov, O. Yu. Podyacheva, O. P. Solonenko, V. V. Pushkarev, V. I. Kuz'min, V. A. Ushakov and N. A. Rudina Catalysis Today, 51(3-4) 411 (1999).

DOI: 10.1016/s0920-5861(99)00030-9

Google Scholar

[18] R. Westergård, L. C. Erickson, N. Axén, H. M. Hawthorne and S. Hogmark Tribology International, 31(5) 271(1998).

DOI: 10.1016/s0301-679x(98)00033-4

Google Scholar