Numerical Material Flow Optimization of a Multi-Hole Extrusion Process

Article Preview

Abstract:

The decrease of the bearing length in the aluminum extrusion processes results in an increase of the material flow and offers, through this, the possibility for correction and optimization. This study presents a simulation-based optimization technique which uses this effect for optimizing the material flow in a direct multi-hole extrusion process. First the extrusion process was numerically calculated to simulate the production of three rectangular profiles with equal cross sections. Here, the die orifices were arranged at various distances to the die centre, which lead to different profile exit speeds. Based on the initial numerical calculation, an automated optimization of the bearing length with the adaptive-response-surface-method was set up to achieve uniform exit speeds for all profiles. Finally, an experimental verification carried out to show the influence of the optimized die design.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

826-833

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Ulysse, R. E. Johnsen, A study of the effect of the process variables in unsymmetrical singlehole and multi-hole extrusion processes, Journal of Materials Processing Technology (JMPT) Vol. 73 (1998), pp.213-225.

DOI: 10.1016/s0924-0136(97)00231-8

Google Scholar

[2] G. Fang, J. Zhou, J. Duszcyk, FEM simulation of aluminium extrusion through two-hole multistep pocket dies, JMPT (2007), doi: 10. 1016/j. jmatprotec. 2008. 04. 036.

Google Scholar

[3] Z. Peng, T. Sheppard, Effect of die pockets on multi-hole die extrusion, Material Science and Engineering Vol. A407 (2005), 89-97.

DOI: 10.1016/j.msea.2005.06.048

Google Scholar

[4] F. Chen, W. Chuang, S. Torng, Finite element analysis of multi-hole extrusion of aluminumalloy tubes, JMPT (2008), doi: 10. 1016/j. jmatprotec. 2007. 11. 292.

Google Scholar

[5] P. Hora et all: Extrusion Zürich 2005, Proceedings of the Extrusion Benchmark 10. -11. (2005), Institute of Virtual Manufacturing, ETH Zürich.

Google Scholar

[6] M. Schikorra, L. Donati, L. Tomesani, E. A. Tekkaya, Extrusion Benchmark 2007 - Benchmark Experiments: Study on Material Flow Extrusion of a Flat Die, Proceedings of Int. Workshop and Extrusion Benchmark (2007).

DOI: 10.4028/www.scientific.net/kem.367.1

Google Scholar

[7] J.S. Chung and S.M. Hwang: Application of a genetic algorithm to the optimal design of the die shape in extrusion, JMPT Vol. 72 (1997), pp.96-77.

Google Scholar

[8] A. S. Wifi, M. N. Shatla and A. Abdel-Hamid: An optimum-curved die profile for the hot forward rod extrusion process, JMPT Vol. 73 (1998), pp.97-107.

DOI: 10.1016/s0924-0136(97)00218-5

Google Scholar

[9] P. Ulysse: Extrusion die design for flow balance using FE and optimization methods, Journal of Mechanical Sciences Vol. 44 (2002), pp.319-341.

DOI: 10.1016/s0020-7403(01)00093-5

Google Scholar

[10] S. K. Lee, D.C. Ko and B.M. Kim: Optimal die profile design for uniform microstructure in hot extruded product, Journal of Machine Tools & Manufacture Vol. 40 (2000), pp.1457-1478.

DOI: 10.1016/s0890-6955(00)00008-0

Google Scholar

[11] H. H. Jo, S.K. Lee, D. C. Ko and B. M. Kim: A study on the optimal tool shape design in a hot forming process, JMPT Vol. 111 (2001), 127-131.

DOI: 10.1016/s0924-0136(01)00537-4

Google Scholar

[12] N. H. Kim, C. G. Kang and B. M. Kim: Die design optimization for axisymmetric hot extrusion of metal matrix composites, J. of Mechanical Sciences Vol. 43 (2001), pp.1507-1520.

DOI: 10.1016/s0020-7403(00)00068-0

Google Scholar

[13] M. P. Reddy: Analysis and Design Optimization of Aluminum Extrusion Dies, Proceedings of the 8th Aluminum Extrusion Technology Seminar (2004), Orlando, USA.

Google Scholar

[14] D. Y. Yang: Computer-Aided Optimization of Metal Forming Processes as Applied to 3-D Extrusion of Profiles, 8th Conference of Technology of Plasticity (2005), Verona, Italy.

Google Scholar

[15] W. Xianghong, Z. Guoqm, L. Yiguo and M. Xinwu: Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process, Materials Science and Engineering Vol. 435-436, 266-274.

DOI: 10.1016/j.msea.2006.06.114

Google Scholar

[16] M. Schikorra, M. Schomäcker, T. Kloppenborg, A. E. Tekkaya, Simulation and Experimental Investigations on Composite Extruded Processes, Ninth International Aluminum Extrusion Technology Seminar 2008, Orlando, USA, 297-307.

Google Scholar

[17] T. Kloppenborg, M. Schikorra, M. Schomäcker, A. E. Tekkaya: Numerical Optimization of Bearing Length in Composite Extrusion Processes, Proceedings of International Workshop and Extrusion Benchmark (2007), Bologna, Italy, ISBN 978-88-548-1286-4.

DOI: 10.4028/www.scientific.net/kem.367.47

Google Scholar

[18] U. Schramm: Structural Optimisation - An Efficient Tool in Automotive Design, Automobiltechnische Zeitschrift Vol. 06 (1998), offprint.

Google Scholar