Structure and Properties of High-Chromium-Alloyed Upper-Eutectoid Steels after Hardening with Concentrated Energy Fluxes

Article Preview

Abstract:

The present paper deals with the structure and properties of two types of tool steels with high chromium content (12% Cr) hardened by means of Concentrated Energy Fluxes (CEF). The treatment conditions are chosen to ensure liquid state transformations. The melted zone of the surface layer features a quasi-ledeburite structure, consisting of inhomogeneous residual austenite and Cr-containing carbides of MmCn type. This austenite is strongly cold hardened and over-saturated with Cr and carbon. The micro-hardness of this region varies from 400 up to 800 HV0.1. The higher the energy density, the lower the hardness and the wider the modified layers. The lower hardness is due to the presence of nearly 100% austenite. Higher hardness was obtained in the heat affected zone. Carbides of M23C6, M7C3, M6C, M3C and МС types were identified. A scheme of carbide changes after treatment with CEF is given.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

896-903

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Guiva et al., Izvestia VUZ, Chernaia metallurgia, 1980, ʋ11, pp.106-111.

Google Scholar

[2] H.W. Bergmann, G. Barton, I. Betz, Z. Werkstofftech, 14, 1983, s. 244-252.

Google Scholar

[3] M.A. Kipnis et al., Tehnologia i organizacia proizvodstva, 1984, ʋ1, p.43.

Google Scholar

[4] D. Stavrev, S. Kirov, XII Celostatne Dni Tepelneho Spracovania, Bratislava, 1/88, s. 97-99.

Google Scholar

[5] A.A. Uglov, B.S. Medres, A.A. Solovev, Fizika i himia obrabotki materiallov, ʋ3, 1987, pp.6-10. Ɇ23ɋ6 Ɇ6ɋ L CrFe c , )( Ɇ3ɋ Ɇ23ɋ6 L CrFe c , )( M6C Ɇ3ɋ6 Ɇ6ɋ L CrFe c , )( Ɇ7C3 Ɇ23ɋ6 CrFe c , )( M6C M3C L (8) (9) (10) (11).

Google Scholar

[6] W.S. Bushek, Golubev, Elektronnaia obrabotka materialov, ʋ5, 1986, pp.24-27.

Google Scholar

[7] W.A. Burakov, Izvestia VUZ, Chernaia metallurgia, ʋ1, 1988, pp.116-121.

Google Scholar

[8] S.A. Fedosov, Fizika i himia obrabotki materiallov, 1990, ʋ5, pp.18-23.

Google Scholar

[9] V.S. Kraposhin, I.C. Kupeckaia, O.P. Kostileva, Fizika i himia obrabotki materiallov, 1989, ʋ5, pp.90-97.

Google Scholar

[10] R. Colago, R. Vilar, Scr Mater, Vol. 36, ʋ2, pp.199-205, (1997).

Google Scholar

[11] R. Colago, R. Vilar, J Mater Sci Lett 17 (1998), pp.563-567.

Google Scholar

[12] D. Stavrev, E. Delineshev, R. Sotirova, Warmebehandlungstechnologien fur Eisenwerkstoffe, Karl-Marks-Stadt, 31. 05-02. 06 1988, s. 114-121.

Google Scholar

[13] M. Ouler, R. Zenker, Sweistechnik, Berlin 36(1986)11, 484-486.

Google Scholar

[14] V.P. Tokmakov, A.V. Nikolaev, Fizika i himia obrabotki materiallov, 1989, ʋ2, pp.138-140.

Google Scholar

[15] Lazernaia i Elektronno-Luchevaia Obrabotka Materialov, spravochnik, Moskva, Mashinostroenie, (1985).

Google Scholar

[16] E. Vatev, D. Stavrev, G. Kovarov, 5th Int. Congress on Heat Treatment of Materials, Proceedings, Volume III, Budapest, Hungary, October 20-24, 1986, s. 1551-1559, in Russian.

Google Scholar