[1]
K. Junhyoung, H. J. Dong, R. Hokyoung, C. Seung-Hoon, J. S. Min, and S. C. Woo, Improvement of bioavailability of water insoluble drugs: Estimation of intrinsic bioavailability, Korean J. Chem. Eng 25(1) (2008) 171-175.
DOI: 10.1007/s11814-008-0031-4
Google Scholar
[2]
Y. Su, Z. Fu, W. Wang, H. Wang, Y. Wang, and J. Zhang, Fabrication and physicochemical characterization of nano Panax notoginseng particles, Nanosci. 11(4) (2006) 258-264.
Google Scholar
[3]
Y.L. Su, Z.Y. Fu, C.J. Quan, and W.M. Wang, Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine, T.Nonferr Metal Soc. 16 (2006) s393-s397.
DOI: 10.1016/s1003-6326(06)60218-5
Google Scholar
[4]
P. Y. Ma, Z. Y. Fu, Y. L. Su, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, Modification of physicochemical and medicinal characterization of Liuwei Dihuang particles by ultrafine grinding, Powder Technol. 191 (2009) 194-199.
DOI: 10.1016/j.powtec.2008.10.008
Google Scholar
[5]
K. Itoh, A. Pongpeerapat, Y. Tozuka, T. Oguchi, and K. Yamamoto, Nanoparticle Formation of Poorly Water-Soluble Drugs from Ternary Ground Mixtures with PVP and SDS, Chem. Pharm. Bull. 51(2) (2003) 171-174.
DOI: 10.1248/cpb.51.171
Google Scholar
[6]
R. Sonada, M. Horibe, T. Oshima, T. Iwasaki, and S. Watano, Improvement of Dissolution Property of Poorly Water-Soluble Drug by Novel Dry Coating Method Using Planetary Ball Mill, Chem. Pharm. Bull. 56(9) (2008) 1243-1247.
DOI: 10.1248/cpb.56.1243
Google Scholar
[7]
K. Zhu, S. Huang, W. Peng, H. Qian, and H. Zhou, Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber, Food Res Int. 43 (2010) 943-948.
DOI: 10.1016/j.foodres.2010.01.005
Google Scholar
[8]
N. Pawar, S. Pai, M. Nimbalkar, and G. Dixit, RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars, Food Chem. 126 (2011) 1330-1336.
DOI: 10.1016/j.foodchem.2010.11.090
Google Scholar
[9]
K. Zhan, K. Xu, and H. Yin, Preparative separation and purification of gingerols from ginger (Zingiber officinale Roscoe) by high-speed counter-current chromatography, Food Chem. 126 (2011) 1959-1963.
DOI: 10.1016/j.foodchem.2010.12.052
Google Scholar
[10]
I. Stoilova, A. Krastanov, A. Stoyanova, P. Denev, and S. Gargova, Antioxidant activity of a ginger extract (Zingiber officinale), Food Chem. 102 (2007) 764-770.
DOI: 10.1016/j.foodchem.2006.06.023
Google Scholar
[11]
A. Norhidayah, A. Noriham, and M. Rusop, Changes in Physical and Antioxidant Properties of Nanostructured Zingiber officinale (Ginger) Rhizome as Affected by Milling Time, Adv Mat Res. 667 (2013) 144-149.
DOI: 10.4028/www.scientific.net/amr.667.144
Google Scholar
[12]
M.S. Su and J. L. Silva, Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation, Food Chem. 97 (2006) 447-451.
DOI: 10.1016/j.foodchem.2005.05.023
Google Scholar
[13]
H. A. Martinez-Correa, P. M. Magalhães, C. L. Queiroga, C. A. Peixoto, A. L. Oliveira, and F. A. Cabral, Extracts from pitanga (Eugenia uniflora L.) leaves: Influence of extraction process on antioxidant properties and yield of phenolic compounds, J. of Supercrit Fluid. 55 (2011) 998 - 1006.
DOI: 10.1016/j.supflu.2010.09.001
Google Scholar
[14]
T. Yamaguchi, H. Takamura, T. Matoba, and J. Terao, HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl., Biosci Biotech Bioch. 62 (1998) 1201-1204.
DOI: 10.1271/bbb.62.1201
Google Scholar
[15]
I. F. F. Benzie and J. J. Strain, The Ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. , Anal Biochem. 239 (1996) 70 -76.
DOI: 10.1006/abio.1996.0292
Google Scholar
[16]
R. Re, P. N, P. A, P. A, Y. M., and R.-E. C.A, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol Med. 26 (1999) 1231-1237.
DOI: 10.1016/s0891-5849(98)00315-3
Google Scholar
[18]
L. Zhang, W. Xie, X. Zhao, Y. Liu, and W. Gao, Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution, Thermochim Act. 495 (2009) 57-62.
DOI: 10.1016/j.tca.2009.05.019
Google Scholar
[19]
J.R. Liu, G.F. Chen, H.N. Shih, and P.C. Kuo, Enhanced antioxidant bioactivity of Salvia miltiorrhiza (Danshen) products prepared using nanotechnology, Phytomedicine. 15 (2008) 23-30.
DOI: 10.1016/j.phymed.2007.11.012
Google Scholar
[20]
Y.C. Chan, C.C. Wu, K.C. Chan, Y.G. Lin, J.W. Liao, M.F. Wang, Y.H. Chang, and K.C. Jeng, Nanonized black soybean enhances immune response in senescence-accelerated mice, Int J Nanomed. 4 (2009) 27-35.
DOI: 10.4049/jimmunol.182.supp.98.20
Google Scholar
[21]
M. I. Gil, B. Hess-Pierce, D. M. Holcraft, and A. A. Kader, Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, J Agr Food Chem. 48 (2000) 4581-4589.
DOI: 10.1021/jf000404a
Google Scholar
[22]
L. Jiechao, Zhonggao, J., Xinhong,L., Lei, H., & Liu, L, Effect of Ultrafine Pulverization on Properties of Apple Pomace Powder, Adv Mat Res. 236-238 (2011) 2560-2563.
DOI: 10.4028/www.scientific.net/amr.236-238.2560
Google Scholar
[23]
J. Yang, X. Kuang, B. Li, B. Zhou, J. Li, B. Cui, and M. Ma, Study on release mechanisme of inhibitory components from cinnamon and clove powders, J Food Safety. 32 (2012) 189-197.
DOI: 10.1111/j.1745-4565.2012.00367.x
Google Scholar
[24]
L. Zhu, Q. Long, and B. Z. Zheng, Ultrafine communication technology and its application in Chinese herb., J.Yunnan University (Nat. Sci.) 26 (2004) 128-131.
Google Scholar
[25]
V. J. Manharaj and Y. Chen, Nanoparticles - A Review, Trop J Pharma Res. 5 (1) (2006) 561-573.
Google Scholar
[26]
S. F. Sulaiman, N. A. M. Yusoff, I. M. Eldeen, E. M. Seow, A. A. B. Sajak, Supriatno, and K. L. Ooi, Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.), J Food Compos Anal. 24 (2011) 1-10.
DOI: 10.1016/j.jfca.2010.04.005
Google Scholar
[27]
M. S. Narayan, K. Akhilender Naidu, G. A. Ravishankar, L. Srinivas, and L. V. Venkataraman, Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation., Prostag Leukotr Ess. 60 (1999) 1-4.
DOI: 10.1054/plef.1998.0001
Google Scholar