Influence of Nano-Filler Loading on the Nano-MgO Dielectrics

Article Preview

Abstract:

In this study, we investigated the effect of MgO nanofiller content to the dielectric layer properties of nano-MgO film. Nano-MgO film was successfully deposited with particle size in the range of 42 to 92 nm by simple chemical solution technique. The film produced shows some surface modification as the nanofiller content increased. With the nanofiller loading increasing from 0 wt% to 3 wt%, relative permittivity values were varied. NanoMgO films with 1 wt% filler content have high relative permittivity value while film with 2 wt% was good in morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-536

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. D. Yi Yin, Yaqun Wang, Qiaohua Wang, Xuguang Li, Charge carrier transportation in the composite of Nano-MgO and cross-linking polyethylene, in Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials (2009) 761-764.

DOI: 10.1109/icpadm.2009.5252319

Google Scholar

[2] S. Okuzumi, Y. Murakami, M. Nagao, Y. Sekiguchi, C. C. Reddy, and Y. Murata, DC Breakdown Strength and Conduction Current of MgO/LDPE Composite Influenced by Filler Size, in 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2008) 722-725.

DOI: 10.1109/ceidp.2008.4772933

Google Scholar

[3] Y. Murakami, T. Okazaki, M. Nagao, Y. Sekiguchi, C. C. Reddy, and Y. Murata, Space charge formation in low-density polyethylene up to breakdown influenced by addition of MgO nano-filler under DC ramp voltage, in IEEE Conference on Electrical Insulation and Dielectric Phenomena (2009) 685-688.

DOI: 10.1109/ceidp.2009.5377736

Google Scholar

[4] Y. Murata, Y. Murakami, M. Nemoto, Y. Sekiguchi, Y. Inoue, M. Kanaoka, N. Hozumi, and M. Nagao, Effects of nano-sized MgO-filler on electrical phenomena under DC voltage application in LDPE, in Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2005) 158-161.

DOI: 10.1109/ceidp.2005.1560645

Google Scholar

[5] S. S. a. M. J. Thomas, Dielectric properties of epoxy nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation 15 (2008) 12-23.

DOI: 10.1109/t-dei.2008.4446732

Google Scholar

[6] K. Ishimoto, E. Kanegae, Y. Ohki, T. Tanaka, Y. Sekiguchi, Y. Murata, and C. Reddy, Superiority of dielectric properties of LDPE/MgO nanocomposites over microcomposites, IEEE Transactions on Dielectrics and Electrical Insulation 16 (2009) 1735-1742.

DOI: 10.1109/tdei.2009.5361597

Google Scholar

[7] H. W. Yanjie Su, Zhihua Zhou, Zhi Yang, Liangmin Wei, Yafei Zhang, Rapid synthesis and characterization of magnesium oxide nanocubes via DC arc discharge, Material Letters 65 (2011) 100-103.

DOI: 10.1016/j.matlet.2010.09.015

Google Scholar

[8] M. A. Alavi and A. Morsali, Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method, Ultrasonics Sonochemistry 17 (2010) 441-446.

DOI: 10.1016/j.ultsonch.2009.08.013

Google Scholar

[9] L. M. Xiong, Y. P. Chen, and J. D. Lee, Atomistic measure of the strength of MgO nanorods, Theoretical and Applied Fracture Mechanics 46 (2006) 202-208.

DOI: 10.1016/j.tafmec.2006.09.007

Google Scholar

[10] A. R. Yacob, M. K. A. A. Mustajab, and N. S. Samadi, Physical and basic strength of prepared nano structured MgO," in 2010 2nd International Conference on Mechanical and Electrical Technology (2010) 20-23.

DOI: 10.1109/icmet.2010.5598484

Google Scholar

[11] S. H. Hyungsoo Choi, Sol-gel-derived magnesium oxide precursor for thin-film fabrication, J. Mater. Res. 15 (2000) 4.

DOI: 10.1557/jmr.2000.0120

Google Scholar

[12] T. Zeng, X. Dong, C. Mao, Z. Zhou, and H. Yang, Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics, J. Eur. Ceram. Soc. 27 (2007) 2025-2029.

DOI: 10.1016/j.jeurceramsoc.2006.05.102

Google Scholar

[13] B. P. Kumar, H. H. Kumar, and D. K. Kharat, Effect of porosity on dielectric properties and microstructure of porous PZT ceramics, Mater. Sci. Eng. B 127 (2006) 130-133.

DOI: 10.1016/j.mseb.2005.10.003

Google Scholar

[14] A. Purwanto, W.-N. Wang, I. W. Lenggoro, and K. Okuyama, Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis, J. Eur. Ceram. Soc. 27 (2007) 4489-4497.

DOI: 10.1016/j.jeurceramsoc.2007.04.009

Google Scholar

[15] Y. Dang, Y. Wang, Y. Deng, M. Li, Y. Zhang, and Z.-w. Zhang, Enhanced dielectric properties of polypropylene based composite using Bi2S3 nanorod filler, Progress in Natural Science: Materials International, 21 (2011) 216-220.

DOI: 10.1016/s1002-0071(12)60033-1

Google Scholar

[16] I. Ciofi, M. R. Baklanov, Z. TÅ'kei, and G. P. Beyer, Capacitance measurements and k-value extractions of low-k films, Microelectron. Eng. 87 (2010) 2391-2406.

DOI: 10.1016/j.mee.2010.04.014

Google Scholar