[1]
Ripandeep Singh, D. Sen, J. Bahadur, and S. Mazumder, Synthesis and microstructural investigations on spray hydrolyzed sub-micrometric titania particles, AIP Conference Proceedings 1447 (2012) 301-302
DOI: 10.1063/1.4709999
Google Scholar
[2]
N.N. Hafizah, L.N. Ismail, M.Z. Musa, M.H. Mamat and M. Rusop, The surface morphology and bonding properties of free standing PMMA/TiO2 nanocomposite films, IEEE Symposium on business, Engineering and Industrial Applications, art.no. 6422982 (2012) 709-713
DOI: 10.1109/isbeia.2012.6422982
Google Scholar
[3]
A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, and W. Ji, Titania-PMMA nanohybrids of enhanced nanocrystallinity, Journal of Electroceramic 16 (2006) 431–439
DOI: 10.1007/s10832-006-9893-1
Google Scholar
[4]
T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, and E. Masuda, Effects of WeakLink ages on the Thermal and Oxidative Degradation of Poly(methyl methacrylates), Macromolecules 19 (1986) 2160–2168
DOI: 10.1021/ma00162a010
Google Scholar
[5]
T.-L. Tsai, C.-C. Lin, G.-L. Guo, and T.-C. Chu, Chemical Kinetics of Polymethyl Methacrylate (PMMA) Decomposition Assessed by a Microwave-Assisted Digestion System, Industrial & Engineering Chemistry Research 47 (2008) 2554-2560
DOI: 10.1021/ie0714246
Google Scholar
[6]
J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie, and W. P. Pan, Synthesis and Properties of Polystyrene-MMT Nanocomposite by Suspension Polymerization, Journal of Applied Polymer Science 83 (2002) 1702–1708
Google Scholar
[7]
A. Laachachi, D. Ruch, F. Addiego, M. Ferriol, M. Cochez, and J.-M. Lopez Cuesta, Effect of ZnO and organo-modified montmorillonite on thermal degradation of poly(methyl methacrylate) nanocomposites, Polymer Degradation and Stability 94 (2009) 670-678
DOI: 10.1016/j.polymdegradstab.2008.12.022
Google Scholar
[8]
K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Mechanism in Nb doped titania oxygen gas sensor, Sensors and Actuators B: Chemical 46 (1998) 194-201
DOI: 10.1016/s0925-4005(98)00111-7
Google Scholar
[9]
T. Hirata, T. Kashiwagi, and J. E. Brown, Thermal and Oxidative Degradation of Poly(methyl methacrylate): Weight Loss, Macromolecules 18 (1985) 1410–1418
DOI: 10.1021/ma00149a010
Google Scholar
[10]
E. Kandare, G. Chigwada, D. Wang, C.A. Wilkie, and J.M. Hossenlopp, Nanostructured Layered Copper Hydroxy Dodecyl Sulfate: A Potential Fire Retardant Additive for Poly(vinyl ester) (PVE), Polymer Degradation and Stability 91 (2006) 1781-1790
DOI: 10.1016/j.polymdegradstab.2005.11.021
Google Scholar
[11]
H. Arisawa and T. B. Brill, Kinetics and Mechanisms of Flash Pyrolysis of Poly (Methyl Methacrylate) (PMMA), Combust. Flame 109 (1997) 415-426
DOI: 10.1016/s0010-2180(96)00190-3
Google Scholar
[12]
B. J. Holland and J. N. Hay, The Kinetics and Mechanisms of the Thermal Degradation of Poly (Methyl Methacrylate) Studied by Thermal Analysis-Fourier Transform Infrared Spectroscopy, Polymer 42 (2001) 4825-4835
DOI: 10.1016/s0032-3861(00)00923-x
Google Scholar
[13]
W. R. Zeng, S. F. Li, and W. K. Chow, Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA, Journal of Fire Sciences 20 (2002) 401-433
DOI: 10.1177/0734904102020005482
Google Scholar
[14]
S. Rüttermann, C. Wandrey, W. H. Raab, and R. Janda, Novel nano-particles as fillers for an experimental resin-based restorative material, Acta Biomaterialia 4 (2008) 1846-1853
DOI: 10.1016/j.actbio.2008.06.006
Google Scholar