Thermo Gravimetric Analysis Study of PMMA/TiO2 Nanocomposites

Article Preview

Abstract:

The polymer matrix of poly (metyl methacrylate) (PMMA) has been introduced with the titanium dioxide (TiO2) nanopowder to study the effects of the TiO2 size on the properties of the nanocomposites. The particle size is playing an important role in determining the properties of the nanocomposite. The decrease the filler size has increase the thermal decomposition of the nanocomposites due to the higher amount of the filler between the polymer chains. The results of X-ray diffraction (XRD) and Energy Dispersive X-Ray Spectrometry (EDS) also were discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

816-820

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ripandeep Singh, D. Sen, J. Bahadur, and S. Mazumder, Synthesis and microstructural investigations on spray hydrolyzed sub-micrometric titania particles, AIP Conference Proceedings 1447 (2012) 301-302

DOI: 10.1063/1.4709999

Google Scholar

[2] N.N. Hafizah, L.N. Ismail, M.Z. Musa, M.H. Mamat and M. Rusop, The surface morphology and bonding properties of free standing PMMA/TiO2 nanocomposite films, IEEE Symposium on business, Engineering and Industrial Applications, art.no. 6422982 (2012) 709-713

DOI: 10.1109/isbeia.2012.6422982

Google Scholar

[3] A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, and W. Ji, Titania-PMMA nanohybrids of enhanced nanocrystallinity, Journal of Electroceramic 16 (2006) 431–439

DOI: 10.1007/s10832-006-9893-1

Google Scholar

[4] T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, and E. Masuda, Effects of WeakLink ages on the Thermal and Oxidative Degradation of Poly(methyl methacrylates), Macromolecules 19 (1986) 2160–2168

DOI: 10.1021/ma00162a010

Google Scholar

[5] T.-L. Tsai, C.-C. Lin, G.-L. Guo, and T.-C. Chu, Chemical Kinetics of Polymethyl Methacrylate (PMMA) Decomposition Assessed by a Microwave-Assisted Digestion System, Industrial & Engineering Chemistry Research 47 (2008) 2554-2560

DOI: 10.1021/ie0714246

Google Scholar

[6] J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie, and W. P. Pan, Synthesis and Properties of Polystyrene-MMT Nanocomposite by Suspension Polymerization, Journal of Applied Polymer Science 83 (2002) 1702–1708

Google Scholar

[7] A. Laachachi, D. Ruch, F. Addiego, M. Ferriol, M. Cochez, and J.-M. Lopez Cuesta, Effect of ZnO and organo-modified montmorillonite on thermal degradation of poly(methyl methacrylate) nanocomposites, Polymer Degradation and Stability 94 (2009) 670-678

DOI: 10.1016/j.polymdegradstab.2008.12.022

Google Scholar

[8] K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Mechanism in Nb doped titania oxygen gas sensor, Sensors and Actuators B: Chemical 46 (1998) 194-201

DOI: 10.1016/s0925-4005(98)00111-7

Google Scholar

[9] T. Hirata, T. Kashiwagi, and J. E. Brown, Thermal and Oxidative Degradation of Poly(methyl methacrylate): Weight Loss, Macromolecules 18 (1985) 1410–1418

DOI: 10.1021/ma00149a010

Google Scholar

[10] E. Kandare, G. Chigwada, D. Wang, C.A. Wilkie, and J.M. Hossenlopp, Nanostructured Layered Copper Hydroxy Dodecyl Sulfate: A Potential Fire Retardant Additive for Poly(vinyl ester) (PVE), Polymer Degradation and Stability 91 (2006) 1781-1790

DOI: 10.1016/j.polymdegradstab.2005.11.021

Google Scholar

[11] H. Arisawa and T. B. Brill, Kinetics and Mechanisms of Flash Pyrolysis of Poly (Methyl Methacrylate) (PMMA), Combust. Flame 109 (1997) 415-426

DOI: 10.1016/s0010-2180(96)00190-3

Google Scholar

[12] B. J. Holland and J. N. Hay, The Kinetics and Mechanisms of the Thermal Degradation of Poly (Methyl Methacrylate) Studied by Thermal Analysis-Fourier Transform Infrared Spectroscopy, Polymer 42 (2001) 4825-4835

DOI: 10.1016/s0032-3861(00)00923-x

Google Scholar

[13] W. R. Zeng, S. F. Li, and W. K. Chow, Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA, Journal of Fire Sciences 20 (2002) 401-433

DOI: 10.1177/0734904102020005482

Google Scholar

[14] S. Rüttermann, C. Wandrey, W. H. Raab, and R. Janda, Novel nano-particles as fillers for an experimental resin-based restorative material, Acta Biomaterialia 4 (2008) 1846-1853

DOI: 10.1016/j.actbio.2008.06.006

Google Scholar