Numerical Simulation of Pre-Crack Propagation in ZrB2-SiC-AlN Ceramics Subjected to Thermal Shock

Article Preview

Abstract:

The present work examines the pre-indented crack propagation in ZrB2-SiC-AlN ceramics subjected to thermal shock under different temperature differences. A cohesive force model is applied according to the shape and characteristics of the crack in the indentation - quenching experiments. A dimensionless parameter is introduced to characterize the effect of depth on thermal stress which considers the cracks propagate along both the surface and the depth direction. The modified numerical results are 11.3%, 16.6%, 20.8% 27.1% and 64.6% at the quenching temperature differences of 240°C, 280°C, 320°C and 360°C, respectively, which are in good agreement with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-158

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Y. Upadhya, W. P. Hoffmann, Materials for ultrahigh temperature structural applications, AM. Ceram. Soc. 163 (2000) 51-59.

Google Scholar

[2] Y. Wang, J. Liang, W. B, X.H. Zhang, J. Alloys Compd. 475 (2009) 762–765.

Google Scholar

[3] D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, AM. Ceram. Soc. 52 (1969) 600–604.

DOI: 10.1111/j.1151-2916.1969.tb15848.x

Google Scholar

[4] A. Gravouil, N. Moes, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-part I: level set update, Int. J. Numer. Meth. Eng. 53 (2002) 2569-2586.

DOI: 10.1002/nme.430

Google Scholar

[5] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng. 45 (1999) 601-602.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[6] M. Ranjbar-far, J. Absi, G. Mariaux, D. S. Smith, Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies. Mater. Des. 32 (2011) 4961-4969.

DOI: 10.1016/j.matdes.2011.05.039

Google Scholar

[7] N. Moes, T. Belytschko, Extended finite element method for cohesive crack growth. engineering fracture mechanics, Eng. Fract. Mech. 69 (2002) 813-833.

DOI: 10.1016/s0013-7944(01)00128-x

Google Scholar

[8] G. N. Wells, L. J. Sluys, A new method for modeling cohesive cracks using finite elements, Int. J. Numer. Meth. Eng. 50 (2001) 2667-2682.

DOI: 10.1002/nme.143

Google Scholar

[9] Jun Liang, Yu Wang, Guodong Fang, Jiecai Han, Research on thermal shock resistance of ZrB2-SiC-AlN ceramics using an indentation-quench method, J. Alloy. Compd. 493 (2010) 695-698.

DOI: 10.1016/j.jallcom.2009.12.194

Google Scholar