Pyrolysis Kinetic Behaviors of ZrB2 Ceramic Organic Precursor

Article Preview

Abstract:

The pyrolysis dynamic process of ZrB2 organic precursor,soluble in benzene homologues with polycarbosilane, was characterized by means of on-line TG-DSC-FTIR-MS coupling technique. The conversion mechanism of ZrB2 ceramic was investigated based on EDS, SEM and XRD. The results show that methylamine, methane, acetone and propene were given off before heat treatment at 1000°C, and the pyrolysis product of ZrB2 precursor existed in the form of ZrO2, B2O3 and amorphous carbon. ZrB2 crystals are obtained completely by the carbothermal reduction process with the release of carbon dioxide at 1500°C. Key words:ZrB2 organic precursor, pyrolysis kinetic behavior, carbothermal reduction process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-145

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kodama, H. Sakamoto, T. Miyoshi. High-tech ceramics view points and perspectives. J. Am. Ceram. Soc., 72(1989): 551-556.

Google Scholar

[2] R. Moene, R. Th. Boon, J. Schoonman, et al. Coating of activated carbon with silicon carbide by chemical vapor deposition. Carbon, 34(1996): 567–579.

DOI: 10.1016/0008-6223(95)00214-6

Google Scholar

[3] C. Isola, P. Appendino, F. Bosco, et al. Protective glass coating for carbon–carbon composites. Carbon, 36(1998): 1213–1218.

DOI: 10.1016/s0008-6223(98)00100-6

Google Scholar

[4] L. F. Cheng, Y. D. Xu, L.T. Zhang, et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments. Carbon, 38 (2000) 2103–2108.

DOI: 10.1016/s0008-6223(00)00068-3

Google Scholar

[5] Y. C. Zhu, S. Ohtani, Y. Sato, et al. The improvement in oxidation resistance of CVD-SiC coated C/C composites by silicon infiltration pretreatment. Carbon, 36(1998): 929-935.

DOI: 10.1016/s0008-6223(97)00207-8

Google Scholar

[6] J. I. Kim, W. J. Kim, D. J. Choi, et al. Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites. Carbon, 43(2005): 1749-1757.

DOI: 10.1016/j.carbon.2005.02.025

Google Scholar

[7] M. W. Chen, H. P. Qiu, J. Jiao, et al. preparation of high performance SiCf/SiC composites through PIP Process. Key Eng. Mater., 544(2013): 43-47.

DOI: 10.4028/www.scientific.net/kem.544.43

Google Scholar

[8] A. Sayir. Carbon fiber reinforced hafnium carbide composite. J. Mater Sci, 39(2004): 5995-6003.

DOI: 10.1023/b:jmsc.0000041696.64055.8c

Google Scholar

[9] V. Craciun, D. Craciun, J. M. Howard, et al. Pulsed laser deposition of crystalline ZrC thin films. Thin Solid Films, 515(2007): 4636-4639.

DOI: 10.1016/j.tsf.2006.11.122

Google Scholar

[10] M. S. Song, B. Huang, M. X Zhang, et al. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction. J. Cryst. Growth, 310(2008): 4290-4294.

DOI: 10.1016/j.jcrysgro.2008.07.016

Google Scholar

[11] Q. F. Tong, J. L. Shi, Y. Z. Song, et al. Resistance to ablation of pitch-derived ZrC/C composites. Carbon, 42(2004): 2495-2 500.

DOI: 10.1016/j.carbon.2004.05.006

Google Scholar

[12] Y. J. Yan, Z. R. Huang, S. M. Dong, et al. Pressureless sintering of high-density ZrB2-SiC Ceramic composites. J. Am. Ceram. Soc., 89(2006): 3589-3592.

DOI: 10.1111/j.1551-2916.2006.01270.x

Google Scholar

[13] X. J. Zhou, G. J. Z hang, Y. G. Li, et al. Hot pressed ZrB2-SiC-C ultra high temperature ceramics with polycarbosilane as a precursor. Mater. Lett., 61(2007): 960-963.

DOI: 10.1016/j.matlet.2006.06.024

Google Scholar

[14] X. H. Zhang, P. Hu, J. C. Han, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol., 68(2008): 1718-1726.

DOI: 10.1016/j.compscitech.2008.02.009

Google Scholar

[15] M. W. Chen, M. Ge, W. G. Zhang. Preparation and Properties of Hollow BN Fibers Derived From Polymeric Precursors. J. Eur. Ceram. Soc., 32( 2012): 3521–3529.

DOI: 10.1016/j.jeurceramsoc.2012.04.012

Google Scholar