[1]
Nakanishi, K. , Iguchi, S. , Inoue, T. , Kato, K. , Kihara, T. , Muraki, H. , Nohira, H. , 1993, Exhaust emission control device in internal combustion engine. Eur. Patent Appl. 0, 573, 672.
Google Scholar
[2]
Kotoh, K. , Kihara, T. , Asanuma, T. , Gotoh, M. , Shibaki, N. , 1995. Development of NOX storage-reduction 3-way catalyst system for lean-burn engines. Toyota Tech. Rev. 44(2), 27-32.
Google Scholar
[3]
Takahashi, N. , Shinjoh, H. , Iijima, T. , Suzuki, T. , Yamazaki, K. , Yokota, K. , Suzuki, H., Miyoshi, N. , 1996, The new concept 3-way catalyst for automotive lean-burn engine: NOX storage and reduction catalyst. Catal. Today 27, 63-69.
DOI: 10.1016/0920-5861(95)00173-5
Google Scholar
[4]
Nakazono, T. , Okabe, T. , 2000. Controlling Method for internal combustion engine. Jpn Patent 008, 009.
Google Scholar
[5]
Fridell, E. , Skoglundth, M. , Westerberg, B. , Johansson, S. , 1999. NOX Storage in barium-containing catalysts. J. Catal. 183, 196-209.
DOI: 10.1006/jcat.1999.2415
Google Scholar
[6]
Anberbtsson, A. , Persson, H. , Engstron, P. , Kasemo, B. , 2001. NOX release from a noble metal/BaO catalyst: dependence on gas composition. Appl. Catal. , B Environ. 31, 27-38.
DOI: 10.1016/s0926-3373(00)00266-6
Google Scholar
[7]
Lietti, L. , Forzatti, P. , Nova, I. , Tronconi, E. , 2001, NOX storage-redction over Pt-Ba/γ-Al2O3. catalyst. J. Catal. 204, 175-191.
DOI: 10.1006/jcat.2001.3370
Google Scholar
[8]
Shimotani, K. , Tsunoda, H. , Yamada, H. , 2002. Exhaust gas purifying facility withnitrogen oxides absorption-reduction catalyst. US Patent 6, 460, 329 B2.
Google Scholar
[9]
Lide, D, R. , 1996. Handbook of Chemistry and Physics, 77th ed. CRC, BocaRaton, P, 4.
Google Scholar
[10]
Engstrom, P. , Amberntsson, A. , Skoglundh, M. , Fridell, E. , 1999. Sulphur dioxideinteraction with NOX storage catalysts. Appl. Catal. 22, L241-L248.
DOI: 10.1016/s0926-3373(99)00060-0
Google Scholar
[11]
Matsumoto, S. , Ikeda, Y. , Suzuki, H. , 2000. NOX storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl. Catal. , B Environ. 25, 115-124.
DOI: 10.1016/s0926-3373(99)00124-1
Google Scholar
[12]
G. Fornasari, R. Glockler, M. Livi, A. Vaccari, Role of the Mg/Al atomic ratio in hydrotalcite-based ctalysts for NOX storage/reduction, Applied Clay Science 29 (2005) 258-266.
DOI: 10.1016/j.clay.2005.02.002
Google Scholar
[13]
Chun sheng Li, Chuan yun Xu, Coprecipitation hydrotalcite andCharacterization, Contemporary Chemical Indistry, 671-0406(2010)04-0381-02.
Google Scholar
[14]
J. M. Lopez Nieto, A. Dejoz, M. I. Vazquez, Preparation characterization and catalyticproperties of vanadium oxides supported on calcined Mg/Al-hydrotalcite, Applied Catalysid A: Ceneral, 132(1995)41-59.
DOI: 10.1016/0926-860x(95)00153-0
Google Scholar