Role of the Mg/Al Atomic Ratio in Catalyst Support for NOX Storage/Reduction

Article Preview

Abstract:

Abstract. Mg-Al-O catalyst support prepared by thermal decomposition of Mg/Al hydrotalcite precursors that obtained by coprecipitation method with different Mg/Al atomic ratios of 1.0, 2.0 and 3.0. The samples characterized by XRD and TG-DSC. The results show that the hydrotalcite performance have high crystallinity with the Mg/Al atomic ratio of 2:1 and 3:1; It can be clearly observed the diffraction peaks of MgO after calcined at 500°C, and shows highest crystallinity of MgO with Mg/Al atomic ratio of 3:1, but we can’t observed the diffraction peaks of Al2O3 because of high dispersity; TG-DSC analysis shows that hydrotalcite has chemical decomposed at 443°C, and the quality lossed 32.97%, this indicates it transform the most of hydrotalcite into MgO at this temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-69

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nakanishi, K. , Iguchi, S. , Inoue, T. , Kato, K. , Kihara, T. , Muraki, H. , Nohira, H. , 1993, Exhaust emission control device in internal combustion engine. Eur. Patent Appl. 0, 573, 672.

Google Scholar

[2] Kotoh, K. , Kihara, T. , Asanuma, T. , Gotoh, M. , Shibaki, N. , 1995. Development of NOX storage-reduction 3-way catalyst system for lean-burn engines. Toyota Tech. Rev. 44(2), 27-32.

Google Scholar

[3] Takahashi, N. , Shinjoh, H. , Iijima, T. , Suzuki, T. , Yamazaki, K. , Yokota, K. , Suzuki, H., Miyoshi, N. , 1996, The new concept 3-way catalyst for automotive lean-burn engine: NOX storage and reduction catalyst. Catal. Today 27, 63-69.

DOI: 10.1016/0920-5861(95)00173-5

Google Scholar

[4] Nakazono, T. , Okabe, T. , 2000. Controlling Method for internal combustion engine. Jpn Patent 008, 009.

Google Scholar

[5] Fridell, E. , Skoglundth, M. , Westerberg, B. , Johansson, S. , 1999. NOX Storage in barium-containing catalysts. J. Catal. 183, 196-209.

DOI: 10.1006/jcat.1999.2415

Google Scholar

[6] Anberbtsson, A. , Persson, H. , Engstron, P. , Kasemo, B. , 2001. NOX release from a noble metal/BaO catalyst: dependence on gas composition. Appl. Catal. , B Environ. 31, 27-38.

DOI: 10.1016/s0926-3373(00)00266-6

Google Scholar

[7] Lietti, L. , Forzatti, P. , Nova, I. , Tronconi, E. , 2001, NOX storage-redction over Pt-Ba/γ-Al2O3. catalyst. J. Catal. 204, 175-191.

DOI: 10.1006/jcat.2001.3370

Google Scholar

[8] Shimotani, K. , Tsunoda, H. , Yamada, H. , 2002. Exhaust gas purifying facility withnitrogen oxides absorption-reduction catalyst. US Patent 6, 460, 329 B2.

Google Scholar

[9] Lide, D, R. , 1996. Handbook of Chemistry and Physics, 77th ed. CRC, BocaRaton, P, 4.

Google Scholar

[10] Engstrom, P. , Amberntsson, A. , Skoglundh, M. , Fridell, E. , 1999. Sulphur dioxideinteraction with NOX storage catalysts. Appl. Catal. 22, L241-L248.

DOI: 10.1016/s0926-3373(99)00060-0

Google Scholar

[11] Matsumoto, S. , Ikeda, Y. , Suzuki, H. , 2000. NOX storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl. Catal. , B Environ. 25, 115-124.

DOI: 10.1016/s0926-3373(99)00124-1

Google Scholar

[12] G. Fornasari, R. Glockler, M. Livi, A. Vaccari, Role of the Mg/Al atomic ratio in hydrotalcite-based ctalysts for NOX storage/reduction, Applied Clay Science 29 (2005) 258-266.

DOI: 10.1016/j.clay.2005.02.002

Google Scholar

[13] Chun sheng Li, Chuan yun Xu, Coprecipitation hydrotalcite andCharacterization, Contemporary Chemical Indistry, 671-0406(2010)04-0381-02.

Google Scholar

[14] J. M. Lopez Nieto, A. Dejoz, M. I. Vazquez, Preparation characterization and catalyticproperties of vanadium oxides supported on calcined Mg/Al-hydrotalcite, Applied Catalysid A: Ceneral, 132(1995)41-59.

DOI: 10.1016/0926-860x(95)00153-0

Google Scholar