Preparation and Electrochemical Performance of SnO2/C-La0.3Sr0.7MnO3 Composites for Li-Ion Anode

Article Preview

Abstract:

Carbon-coated SnO2 particles (SnO2/C) were first synthesized by hydrolysis of SnCl4 in the sucrose solution at 85 °C, where sucrose is the carbon source. These particles were then mixed with La0.7Sr0.3MnO3 (LSM) through a suspension stirring process to form SnO2/C-LSM composites. The results of SEM and EDX show that LSM particles are distributed in SnO2/C uniformly. Galvanostatic discharge-charge measurement was used to test the electrochemical performance of SnO2/C and SnO2/C-LSM. It was found that the specific reversible capacity increased from165 mAh/g for SnO2/C to 270 mAh/g for SnO2/C-LSM after 50 cycles. This improvement may be attributed to the lower charge transfer resistance and higher electronic conductivity resulted from introducing LSM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer and J. R. Dahn, Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods, Int. J. Energy Res. 34 (2010) 535-555.

DOI: 10.1002/er.1669

Google Scholar

[2] L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard and J. R. Dahn, The electrochemical reaction of lithium with tin studied by in situ AFM, J. Electrochem. Soc. 150 (2003) A419-424.

DOI: 10.1149/1.1556595

Google Scholar

[3] X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 18 (2006) 2325-2329.

DOI: 10.1002/adma.200600733

Google Scholar

[4] S. L. Chou, J. Z. Wang, H. K. Liu and S. X. Dou, SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage, Electrochem. Commun. 11 (2009) 242-246.

DOI: 10.1016/j.elecom.2008.11.017

Google Scholar

[5] L. Yuan, K. Konstantinov, G. X. Wang, H. K. Liu and S.X. Dou, Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries, J. Power Sources 146 (2005) 180-184.

DOI: 10.1016/j.jpowsour.2005.03.008

Google Scholar

[6] M. S. Park, Y. M. Kang, J. H. Kim, G. X. Wang, S. X. Dou and H. K. Liu, Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders, Carbon 46 (2008) 35-40.

DOI: 10.1016/j.carbon.2007.10.032

Google Scholar

[7] Y. Cui, X. L. Zhao and R. S. Guo, Improved electrochemical performance of La0. 7Sr0. 3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process, Electrochim. Acta 55 (2010) 922-926.

DOI: 10.1016/j.electacta.2009.08.020

Google Scholar

[8] Y. Cui, X. L. Zhao and R. S. Guo, Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating, J. Alloys Compd. 490 (2010) 236-240.

DOI: 10.1016/j.jallcom.2009.09.165

Google Scholar

[9] Y. Cui, M. Wang and R. S. Guo, High rate performance of LiFePO4 cathode materials co-doped with C and Ti4+ by microwave synthesis, Bull. Mater. Sci. 32 (2009) 579-582.

DOI: 10.1007/s12034-009-0088-7

Google Scholar

[10] Y. Cui, X. L. Zhao and R. S. Guo, High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode, Mater. Res. Bull. 45 (2010) 844-849.

DOI: 10.1016/j.materresbull.2010.03.008

Google Scholar

[11] S. L. Chou, J. Z. Wang, C. Zhong, M.M. Rahmana, H. K. Liu and S. X. Dou A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries, Electrochim. Acta 54 (2009).

DOI: 10.1016/j.electacta.2009.08.006

Google Scholar

[12] D. Bar-Tow, E. Peled and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc. 146 (1999) 824-832.

DOI: 10.1149/1.1391688

Google Scholar

[13] L. A. Courtney and J. R. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites, J Electrochem. Soc. 144 (1997) 2045-(2052).

DOI: 10.1149/1.1837740

Google Scholar