High Frequency Magnetic Properties of A Composite Material Prepared from Z-Type Hexaferrite and Bi2O3

Article Preview

Abstract:

The composite materials are composed by Z-type hexaferrite and Bi2O3 by solid-state reaction method. Crystalline phase, microstructure and magnetic properties were measured by XRD, SEM, and VNA. The results showed that the sintering temperature and the content of Bi2O3 can effectively affected both uniformity and densification. What's more, Z-type hexaferrite mixed with proper content of Bi2O3 and sintered at a low temperature presented a high Q-factor in a high frequency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-102

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Vincent G. Harris, Modern microwave ferrites, IEEE Trans Magn. 48 (2012) 1075-1104.

Google Scholar

[2] Lanlin Zhang, ARchana Puri, Kubilay sertel, Low loss Z-type Ba3Co2Fe24O41 hexaferrites for Antennas and RF devices, IEEE Trans Magn. 47 (2011) 2149-2152.

DOI: 10.1109/tmag.2011.2128876

Google Scholar

[3] Chunlei Yin, Junmei Fan, Liuyang Bai, Microwave absorption and antioxidation properties of flaky carbonyl iron passivated with carbon dioxide, J. Magn. Magn. Mater 340 (2013) 65-69.

DOI: 10.1016/j.jmmm.2013.03.038

Google Scholar

[4] R.S. Meena, S. Bhattachrya, R. Chatterjee, Development of tuned microwave absorbers using U-type hexaferrite, Materials and Design. 31 (2010) 3220-3226.

DOI: 10.1016/j.matdes.2010.02.019

Google Scholar

[5] Jiang Li Cao, Xiao Hui Wang, Li Zhang, Lateral growth of coating on Co2Z ferrite during electroplating of multilayer chip inductors, Ceram Int. 29 (2003) 327-331.

DOI: 10.1016/s0272-8842(02)00142-6

Google Scholar

[6] S. Bae, Y. K. Hong, J. J. Lee, Low loss Z-type barium ferrite (Co2Z) for terrestrial digital multimedia broadcasting antenna application, J. Appl. Phys. 105 (2009) 07A515.

DOI: 10.1063/1.3073940

Google Scholar

[7] S. Chikazumi, Physics of Magnetism. New York: Wiley, (1964).

Google Scholar

[8] J. Smit and H. P. J. Wijn, Ferrites. Eindhoven, The Netherlands: Philips Tech. Library, (1959).

Google Scholar

[9] S. Kračunovska·J. Töpfer, Sythsis, sintering behavior and magnetic properties of Cu-substituted Co2Z hexagonal ferrite, J Mater Sci: Mater Election. 22 (2011) 467-473.

DOI: 10.1007/s10854-010-0161-4

Google Scholar

[10] Hongguo Zhang, Longtu Liu, Ji Zhou, Low-Temperature Sintering, Densification, and Properties of Z-type Hexaferrite with Bi2O3 Additives, J. Am. Ceram. Soc. 84 (2001) 2889–94.

Google Scholar

[11] Osamu Kimura, Enhanced Dispersion Frequency of Hot-pressed Z-type Magnetoplumbite Ferrite with the Composition 2CoO·3Ba0. 5Sr0. 5O·10. 8Fe2O3, J. Am. Ceram. Soc. 78 (1995) 2857-2860.

DOI: 10.1111/j.1151-2916.1995.tb08068.x

Google Scholar

[12] Hsing-I Hsiang, Li-Then Mei, Chi-Shiung Hsi, Glass additive in fluence on the sintering behavior, microstructure and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites, J. Magn. Magn. Mater. 323 (2011) 1011-1014.

DOI: 10.1016/j.jmmm.2010.12.006

Google Scholar

[13] Miha Drofenik, Influence of the Addition of Bi2O3 on the Grain Growth and Magnetic Permeability of MnZn Ferrites, J. Am. Ceram. Soc. 81 (1998) 2841–2848.

DOI: 10.1111/j.1151-2916.1998.tb02704.x

Google Scholar

[14] Hua Su, Huaiwu Zhang, Xiaoli TangEffects of Bi2O3–WO3 additives on sintering behaviors and magnetic properties of NiCuZn ferrites, MATER SCI ENG B. 117 (2005) 231–234.

DOI: 10.1016/j.mseb.2004.11.028

Google Scholar

[15] K. Brooks, Y. Berta, and V. Amarakoon., Effect of Bi2O3 on Impurity Ion Distribution and Electrical Resistivity of Li-Zn Ferrite, J. Am. Ceram. Soc. 75 (1992) 3065–69.

DOI: 10.1111/j.1151-2916.1992.tb04387.x

Google Scholar