Theoretical Predication Method of High Order Elastic Constants of Cubic and Tetragonal Crystal Material

Article Preview

Abstract:

The theoretical method of predicating second and third order elastic constants of cubic and tetragonal material are presented by using first-principles total-energy method combined with the means of homogeneous deformation. The predicted results of SrTiO3 provide reasonable agreement with the reported experimental data, other theoretical results and Cauchy relations. Since high order elastic constants are very difficult to be measured, the methods presented here provide a valuable guidance for experiments and the investigation of high order elastic properties for cubic and tetragonal materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

263-267

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Hiki, A. Granato, Anharmonicity in noble metals; higher order elastic constants, Physical Review, 144 (1966) 411.

DOI: 10.1103/physrev.144.411

Google Scholar

[2] Y. Hiki, J. Thomas Jr, A. Granato, Anharmonicity in Noble Metals: Some Thermal Properties, Physical Review, 153 (1967) 764.

DOI: 10.1103/physrev.153.764

Google Scholar

[3] P. Keating, Theory of the third-order elastic constants of diamond-like crystals, Physical Review, 149 (1966) 674.

DOI: 10.1103/physrev.149.674

Google Scholar

[4] T. Çagin, J.R. Ray, Elastic constants of sodium from molecular dynamics, Phys Rev B, 37 (1988) 699.

DOI: 10.1103/physrevb.37.699

Google Scholar

[5] R. Srinivasan, Lattice theory of third-order elastic constants of nonprimitive, nonpiezoelectric lattices, Physical Review, 144 (1966) 620.

DOI: 10.1103/physrev.144.620

Google Scholar

[6] O. Nielsen, Optical phonons and elasticity of diamond at megabar stresses, Phys Rev B, 34 (1986) 5808.

DOI: 10.1103/physrevb.34.5808

Google Scholar

[7] O. Nielsen, R.M. Martin, Quantum-mechanical theory of stress and force, Phys Rev B, 32 (1985) 3780-3791.

DOI: 10.1103/physrevb.32.3780

Google Scholar

[8] N.L. Ross, R.J. Angel, J. Kung, T.D. Chaplin, Elastic Properties of Calcium Oxide Perovskites, in, Cambridge Univ Press, 2002, pp.115-120.

Google Scholar

[9] W.P. Mason, R.N. Thurston, Physical acoustics: principles and methods, Academic press, (1999).

Google Scholar

[10] J. Zhao, J. Winey, Y. Gupta, First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry, Phys Rev B, 75 (2007) 094105.

DOI: 10.1103/physrevb.75.094105

Google Scholar

[11] H. Wang, M. Li, Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals, Phys Rev B, 79 (2009) 224102.

DOI: 10.1103/physrevb.79.224102

Google Scholar

[12] X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, D.C. Allan, First-principles computation of material properties: the ABINIT software project, Computational Materials Science, 25 (2002).

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[13] X. Gonze, G.M. Rignanese, M. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, A brief introduction to the ABINIT software package, Zeitschrift für Kristallographie, 220 (2005).

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[14] X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Computer Physics Communications, 180 (2009).

DOI: 10.1016/j.cpc.2009.07.007

Google Scholar

[15] S. Piskunov, E. Heifets, R. Eglitis, G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Computational Materials Science, 29 (2004) 165-178.

DOI: 10.1016/j.commatsci.2003.08.036

Google Scholar

[16] R. Bell, G. Rupprecht, Elastic constants of strontium titanate, Physical Review, 129 (1963) 90.

DOI: 10.1103/physrev.129.90

Google Scholar

[17] A. Beattie, G. Samara, Pressure dependence of the elastic constants of SrTiO3, J Appl Phys, 42 (1971) 2376-2381.

Google Scholar