[1]
Biallas G, Maier H J. in-situ fatigue in an environmental scanning electron microscope- potential and current limitations. Int J Fatigue. 29 (2007) 1413-1425.
DOI: 10.1016/j.ijfatigue.2006.11.008
Google Scholar
[2]
Li Xu-Dong, Wang Xi-Shu, Ren Huai-Hui, Chen Yin-Long, Mu Zhi-Tao. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy. Corros. Sci. 55(2) (2012) 26-33.
DOI: 10.1016/j.corsci.2011.09.025
Google Scholar
[3]
Wang X S, Li Y, Meng X K. An estimation method on failure stress of micro thickness Cu film-substrate structure. Sci China Ser E-Tech Sci. 52 (2009) 2210-2215.
DOI: 10.1007/s11431-009-0235-9
Google Scholar
[4]
Xi-Shu Wang, Xu-Dong Li, Huai-Hui Ren, Hai-Yan Zhao , Ryosuke Murai, SEM in-situ study on high cyclic fatigue of SnPb-solder joint in the electronic packaging. Microelectronics Reliability. 51(2011) 1377-1384.
DOI: 10.1016/j.microrel.2011.02.011
Google Scholar
[5]
Wang X S, Yan C K, Li Y, et al. SEM in-situ study on failure of nanocrystal metallic thin films and substrate under three point bending. Int J Facture. 15 (2008) 269-279.
Google Scholar
[6]
Maier H J, Gabor P, Karaman I. Cyclic stress-strain response and low-cycle fatigue damage in ultrafine grained copper. Mater Sci Eng A. 410-411 (2005) 457-461.
DOI: 10.1016/j.msea.2005.08.079
Google Scholar
[7]
Shuter DM, Geary W. The Influence of Specimen Thickness on Fatigue Crack Growth Retardation Following An Overload. International journal of fatigue. 17(2) (2010) 111-119.
DOI: 10.1016/0142-1123(95)95890-s
Google Scholar
[8]
Wang Xi-shu, Kawagoishi. A simple predicting method of fatigue crack growth rate based on a tensile strength of carbon steel. Journal of Iron and Steel Research International. 10(2) (2011) 58-62.
Google Scholar