Investigation of Cr34Ni45 Ethylene Cracking Furnace Tube in Service

Article Preview

Abstract:

The structure and mechanical property changes of Cr34Ni45 ethylene cracking furnace tube serviced for different time (as-cast, 1.5 years and 6 years) are systematically investigated by using SEM, EMPA, XRD and mechanics performance test methods. The microstructure of the as-cast alloy consists of austenitic matrix, NbC and M7C3 primary carbides. Eutectic M7C3 transform into M23C6, and the NbC transform into Nb3Ni2Si which is so-called η-phase during service, accompany with precipitation of secondary M23C6. Furthermore, comparing to original uniform microstructure distribution, there are three zones including oxidation layer, carbides depletion zone and carbides-rich zone at the subsurface region of the inner-wall of Cr35Ni45 tubes after long time service. Oxidation behaviors at high temperature consist of external oxidation of chromium and internal oxidation of silicon. The carburizing behavior of Cr35Ni45 tube is mainly caused by the coking on the surface of inner-wall, but carburization of the serviced tubes are both at lesser-degree because of the auto-remediation of outer oxidation layer. High temperature service heavily reduced mechanical performance of the tubes, and fracture mode transform from a mixed mode to a brittle one during service.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

390-400

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Piekarski, Materials characterization, 47 (2001) 181-186.

Google Scholar

[2] A. Kaya, P. Krauklis, D. Young, Materials characterization, 49 (2002) 11-21.

Google Scholar

[3] A. Ribeiro, L. De Almeida, D. Dos Santos, D. Fruchart, G. Bobrovnitchii, Journal of alloys and compounds, 356 (2003) 693-696.

DOI: 10.1016/s0925-8388(03)00173-7

Google Scholar

[4] A. Ul-Hamid, H.M. Tawancy, A. -R.I. Mohammed, N.M. Abbas, Engineering Failure Analysis, 13 (2006) 1005-1021.

DOI: 10.1016/j.engfailanal.2005.04.003

Google Scholar

[5] J. Swaminathan, K. Guguloth, M. Gunjan, P. Roy, R. Ghosh, Engineering Failure Analysis, 15 (2008) 311-331.

DOI: 10.1016/j.engfailanal.2007.02.004

Google Scholar

[6] S. Shi, J. Lippold, Materials characterization, 59 (2008) 1029-1040.

Google Scholar

[7] J. Laigo, F. Christien, R. Le Gall, F. Tancret, J. Furtado, Materials characterization, 59 (2008) 1580-1586.

DOI: 10.1016/j.matchar.2008.02.001

Google Scholar

[8] A. Vazdirvanidis, G. Pantazopoulos, A. Louvaris, Engineering Failure Analysis, 15 (2008) 931-937.

DOI: 10.1016/j.engfailanal.2007.10.010

Google Scholar

[9] V. Mertinger, M. Benke, S. Szabó, O. Bánhidi, B. Bollo, Á. Kovács, Engineering Failure Analysis, 18 (2011) 1675-1682.

DOI: 10.1016/j.engfailanal.2011.02.003

Google Scholar

[10] R. Voicu, E. Andrieu, D. Poquillon, J. Furtado, J. Lacaze, Materials characterization, 60 (2009) 1020-1027.

DOI: 10.1016/j.matchar.2009.04.007

Google Scholar

[11] W. Wang, F. Xuan, Z. Wang, B. Wang, C. Liu, Materials & Design, 32 (2011) 4010-4016.

Google Scholar

[12] M. Mostafaei, M. Shamanian, H. Purmohamad, M. Amini, A. Saatchi, Engineering Failure Analysis, 18 (2011) 164-171.

DOI: 10.1016/j.engfailanal.2010.08.017

Google Scholar

[13] S. Khodamorad, D. Haghshenas Fatmehsari, H. Rezaie, A. Sadeghipour, Engineering Failure Analysis, 21 (2012) 1-8.

DOI: 10.1016/j.engfailanal.2011.11.018

Google Scholar

[14] I.A. Sustaita-Torres, S. Haro-Rodríguez, M.P. Guerrero-Mata, M. de la Garza, E. Valdés, F. Deschaux-Beaume, R. Colás, Materials Chemistry and Physics, 133 (2012) 1018-1023.

DOI: 10.1016/j.matchemphys.2012.02.010

Google Scholar

[15] P. Silveston, H. Lekshminarayanan, Carbon, 27 (1989) 490-492.

Google Scholar

[16] I. Le May, T. Da Silveira, C. Vianna, International journal of pressure vessels and piping, 66 (1996) 233-241.

DOI: 10.1016/0308-0161(95)00098-4

Google Scholar

[17] R. Petkovic-Luton, T. Ramanarayanan, Oxidation of metals, 34 (1990) 381-400.

Google Scholar

[18] S. Borjali, S.R. Allahkaram, H. Khosravi, Materials & Design, 34 (2012) 65-73.

Google Scholar

[19] Η. Τawancy, Engineering Failure Analysis, 16 (2009) 2171-2178.

Google Scholar

[20] L.H. de Almeida, A.F. Ribeiro, I. Le May, Materials characterization, 49 (2002) 219-229.

Google Scholar

[21] T. F. Li. Chemical Industry Press, (2003) 139-141.

Google Scholar

[22] S. Ling, T. Ramanarayanan, R. Petkovic-Luton, Oxidation of metals, 40 (1993) 179-196.

DOI: 10.1007/bf00665264

Google Scholar

[23] Z. Zhu, C. Cheng, J. Zhao, L. Wang, Engineering Failure Analysis, 21 (2012) 59-66.

Google Scholar

[24] S.R. Allahkaram, S. Borjali, H. Khosravi, Materials & Design, 33 (2012) 476-484.

Google Scholar