[1]
Uemori T, Okada T, Yoshida F. FE analysis of springback in hat-bending with consideration of initial anisotropy and the Bauschinger effect. Key Engineering Materials 177-180, 497-502.
DOI: 10.4028/www.scientific.net/kem.177-180.497
Google Scholar
[2]
Fusahito Yoshida, Yuya Kaneda, Shigeo Yamamoto. A plasticity model describing yield-point phenomena of steels and its application to FE simulation of temper rolling. International Journal of Plasticity 24 (2008) 1792-1818.
DOI: 10.1016/j.ijplas.2008.05.004
Google Scholar
[3]
Lumin Geng, R. H. Wagner. Springback analysis with a modified hardening model. SAE Technical Paper Series, 2000-01-0768.
DOI: 10.4271/2000-01-0768
Google Scholar
[4]
Kwansoo Chung, Myoung-Gyu Lee, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part I theory and formulation. International Journal of Plasticity 21(2005).
DOI: 10.1016/j.ijplas.2004.05.014
Google Scholar
[5]
Yoshida F. Material models for accurate simulation of sheet metal forming and springback. AIP Conference Proceedings. 1252, 71 (2010).
DOI: 10.1063/1.3457626
Google Scholar
[6]
Yoshida F, Uemori T. A model of large-strain cyclic plasticity describing the Baushinger effect and work hardening stagnation. International Journal of Plasticity 18(2002): 661-86.
DOI: 10.1016/s0749-6419(01)00050-x
Google Scholar
[7]
Yoshida F, Uemori T. A model of large-strain cyclic plasticity and its application to springback simulation. International Journal of Mechanical Sciences 45(2003)1687–1702.
DOI: 10.1016/j.ijmecsci.2003.10.013
Google Scholar
[8]
LS-DYNA, Keyword User's Manual Version971 Vol. 2: Material Models, Livermore Software Technology Corporation, California, USA; (2007).
Google Scholar
[9]
RADIOSS THEORY MANUAL 11. 0 version. Large Displacement Finite Element Analysis Chapter 9. Altair Engineering, Inc.
Google Scholar
[10]
P. -A. Eggertsen, K. Mattiasson. On the modelling of the bending-unbending behaviour for accurate springback predictions. International Journal of Mechanical Sciences51(2009)547–563.
DOI: 10.1016/j.ijmecsci.2009.05.007
Google Scholar
[11]
K. Yilamu, R. Hino, H. Hamasaki, F. Yoshida. Air bending and springback of stainless steel clad aluminum sheet. Journal of Materials Processing Technology 210 (2010) 272-278.
DOI: 10.1016/j.jmatprotec.2009.09.010
Google Scholar
[12]
B. Chongthairungruang, V. Uthaisangsuk, et al. Experimental and numerical investigation of springback effect for advanced high strength dual phase steel. Materials and Design 39 (2012) 318-328.
DOI: 10.1016/j.matdes.2012.02.055
Google Scholar
[13]
A. Ghaei, D.E. Green, A. Taherizadeh. Semi-implicit numerical integration of Yoshida-Uemori two-surface plasticity model. International Journal of Mechanical Sciences 52(2010)531-540.
DOI: 10.1016/j.ijmecsci.2009.11.018
Google Scholar
[14]
A. Ghaei, D.E. Green. Numerical implementation of Yoshida-Uemori two-surface plasticity model using a fully implicit integration scheme. Computational Materials Science 48(2010)195-205.
DOI: 10.1016/j.commatsci.2009.12.028
Google Scholar
[15]
H. M. Li, R. Yang. Relationship between cyclic strain behavior of tempered sorbite in a rail steel and its dislocation structures. Journal of Iron and Steel Research 7(1995)47-52. In Chinese.
Google Scholar
[16]
G. A. Chang, J. B. Mander. Seismic energy based fatigue damage analysis of bridge columns: Part I - Evaluation of Seismic Capacity. Technical Report NCEER-94-0006, NCEER, (1994).
Google Scholar
[17]
Fusahito Yoshida, Takeshi Uemori, Kenji Fujiwara. Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain. International Journal of Plasticity 18(2002)633-659.
DOI: 10.1016/s0749-6419(01)00049-3
Google Scholar
[18]
Hyunok Kim, Ninad Nargundkar, Taylan Altan. Prediction of bend allowance and springback in air bending. Journal of Manufacturing Science and Engineering 129(2007)342-351.
DOI: 10.1115/1.2673527
Google Scholar