Solvothermal Synthesis, Structure, Fluorescence and Magnetism Properties of a Novel 3D Metal-Organic Framework Based on Tetranuclear Copper Secondary Building Units

Article Preview

Abstract:

A novel 3D metal-organic framework based on tetranuclear copper Secondary Building Units, [Cu2(μ3-OH)(4-oip)(DMF)]·DMF·2H2O (JUC-76) (4-oip = 4-hydroxyisophthalic, DMF = N,N-dimethylformamide, and JUC = Jilin University China), has been synthesized under solvothermal conditions. It crystallizes in monoclinic symmetry with space group P21/n. JUC-76 possesses a three-dimensional network with one-dimensional rhombic channels of approximately 13.6 × 8.5 Å2 along the [100] direction. The resulting structure of JUC-76 is a distorted rutile topology with one 3-connected organic node and one 6-connected inorganic node. And its Schläfli symbol is (4·62)2(42·610·83). In addition, JUC-76 exhibits fluorescence emission at 446 nm, and a dominant anti-ferromagnetic interaction between the Cu (II) ions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

543-549

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe and O.M. Yaghi. Acc. Chem. Res. 34 (2001) 319.

Google Scholar

[2] S. Kitagawa and K. Uemara. Chem. Soc. Rev. 34 (2005) 109.

Google Scholar

[3] G. Férey. Chem. Soc. Rev. 37 (2008) 191.

Google Scholar

[4] S.L. Qiu and G.S. Zhu. Coord. Chem. Rev. 253 (2009) 2891.

Google Scholar

[5] J. R. Li, J. Sculley and H. C. Zhou. Chem. Rev. 112(2012) 869.

Google Scholar

[6] M. Yoon, R. Srirambalaji and K. Kim. Chem. Rev. 112(2012) 1196.

Google Scholar

[7] M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houka. Chem. Soc. Rev. 38 (2009) 1330.

Google Scholar

[8] W. Zhang and R. G. Xiong. Chem. Rev. 112 (2012) 1163.

Google Scholar

[9] N.L. Rosi, M. Eddaoudi, J. Kim, M. O'Keeffe and O.M. Yaghi. Angew. Chem. 114 (2002) 294.

Google Scholar

[10] X.D. Guo, G.S. Zhu, Q.R. Fang, M. Xue, G. Tian, J.Y. Sun, X.T. Li and S.L. Qiu. Inorg. Chem. 44 (2005) 3850.

Google Scholar

[11] W. Mori, S. Takamizawa, C.N. Kato, T. Ohmura and T. Sato. Microporous Mesoporous Mater. 73 (2004) 31.

Google Scholar

[12] M. Kurmoo. Chem. Soc. Rev. 38 (2009) 1353.

Google Scholar

[13] A.L. Gavrilova and B. Bosnich. Chem. Rev. 104 (2004) 349.

Google Scholar

[14] Z.X. Wang, X.F. Shen, J. Wang, P. Zhang, Y.Z. Li, E.N. Nfor, Y. Song, S. i. Ohkoshi, K. Hashimoto and X.Z. You. Angew. Chem. Int. Ed. 45 (2006) 3287.

DOI: 10.1002/anie.200600455

Google Scholar

[15] Z.X. Wang, X.L. Li, B.L. Liu, H. Tokoro, P. Zhang, Y. Song, S. Ohkoshi, K. Hashimoto and X.Z. You. Dalton Trans. (2008) 2103.

Google Scholar

[16] D.W. Fu, W. Zhang and R.G. Xiong. Cryst. Growth Des. 8 (2008) 3461.

Google Scholar

[17] B. Chen, M. Eddaoudi, S.T. Hyde, M. O'Keeffe and O.M. Yaghi. Science 291 (2001) 1021.

Google Scholar

[18] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita. Nature 436 (2005) 238.

DOI: 10.1038/nature03852

Google Scholar

[19] Q. Ye, Y.M. Song, G.X. Wang, K. Chen, D.W. Fu, P.W.H. Chan, J.S. Zhu, S.D. Huang and R.G. Xiong. J. Am. Chem. Soc. 128 (2006) 6554.

Google Scholar

[20] Y.S. Bae, O.K. Farha, A.M. Spokoyny, C.A. Mirkin, J.T. Hupp and R.Q. Snurr. Chem. Commun. (2008) 4135.

DOI: 10.1039/b805785k

Google Scholar

[21] T. Uemura, N. Yanaia and S. Kitagawa. Chem. Soc. Rev. 38 (2009) 1228.

Google Scholar

[22] X.M. Zhang, J.S. Chen, K.Y. Xu, C.R. Ding, W.L. She and X.M. Chen. Inorg. Chim. Acta. 357 (2004) 1389.

Google Scholar

[23] X.M. Zhang, R.Q. Fang, H.S. Wu and S.W. Ng. Acta Crystallogr. Sect. E: Struct. Rep. Online 60 (2004) m50.

Google Scholar

[24] X.J. Li, X.Y. Wang, S. Gao and R. Cao. Inorg. Chem. 45 (2006) 1508.

Google Scholar

[25] H. Ren, T.Y. Song, J.N. Xu, S.B. Jing, Y. Yu, P. Zhang and L.R. Zhang. Crys. Growth & Des. 9 (2009) 105.

Google Scholar

[26] X.M. Zhang, R.Q. Fang and H.S. Wu. CrystEngComm. 7 (2005) 96.

Google Scholar

[27] G.M. Sheldrick. SHELXS 97 Program for Crystal Structure Refinement, University of Gottingen, Gottingen Germany, (1997).

Google Scholar

[28] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen and I.D. Williams. Science 283 (1999) 1148.

Google Scholar

[29] K.C. Mondal and P.S. Mukherjee. Inorg. Chem. 47 (2008) 4215.

Google Scholar

[30] J.F. Song, Y. Chen, Z.G. Li, R.S. Zhou, X.Y. Xu, J.Q. Xu and T.G. Wang. Polyhedron 26 (2007) 4397.

Google Scholar

[31] A.L. Spek. J. Appl. Crystallogr. 36 (2003) 7.

Google Scholar

[32] N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe and O.M. Yaghi. J. Am. Chem. Soc. 127 (2005) 1504.

Google Scholar

[33] A. Thirumurugan and S. Natarajan. Dalton Trans. (2004) 2923.

Google Scholar

[34] Y.F. Yue, B.W. Wang, E.Q. Gao, C.J. Fang, C. He and C.H. Yan. Chem. Commun. (2007) (2034).

Google Scholar