Preparation and Characterization of Double Activity Sulfate-Gallate Bagasse Xylan

Article Preview

Abstract:

The objective of this research was to introduce another kind of anti-biological activitiy group to xylan sulfate for improve performance in anti-biological activitiy. A novel double activity sulfate-gallate bagasse xylan was prepared by using bagasse xylan as raw material, sodium nitrilotriacetic sulfonate and gallic acid as esterifying agents. The structure of product was characterized by FT-IR and SEM. The results show that the bagasse xylan was modified successfully, and the final product is a novel double activity sulfate-gallate bagasse xylan.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-219

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pouvreau, M.C. Jonathan, M.A. Kabel, S.W.A. Hinz, H. Gruppen, H. A. Schols: Enzyme and Microbial Technology Vol. 49 (2011), pp.312-320.

DOI: 10.1016/j.enzmictec.2011.05.010

Google Scholar

[2] B. Fatima-Zohra, P. Catherine, H. Patrick: Carbohydrate Research Vol. 346(2011), pp.2896-2904.

Google Scholar

[3] S. Daus, K. Petzold-Welcke, M. Kötteritzsch: Macromolecular Materials and Engineering Vol. 296(2011), pp.551-561.

DOI: 10.1002/mame.201000390

Google Scholar

[4] M. Pinaki, A.P. Carlos, B.D. Elsa: International Journal of Biological Macromolecules Vol. 46(2010), pp.173-178.

Google Scholar

[5] L.S. Audrey, J.M. Derek, S.L. Marc: Glycoconjugate Journal Vol. 15(1998), pp.697-712.

Google Scholar

[6] K.J.S. Kumar, M.G. Vani, S.Y. Wang , J.W. Liao: Biofactors Vol. 39(2013), pp.259-270.

Google Scholar

[7] T.M. Mohammad, F. Yaghoub, J.S. Maryam: Food Chemistry Vol. 138(2013), pp.1028-1033.

Google Scholar

[8] B. Tian , Y. Chen , S.J. Ding: Protein Expression and Purification Vol. 85(2012), pp.44-50.

Google Scholar

[9] L. Pouvreaua, M.C. Jonathan, M.A. Kabel: Enzyme and Microbial Technology Vol. 49(2011), pp.312-320.

Google Scholar

[10] T. Marie-Christine, N. Audrey, D. Claude: Journal of Biotechnology Vol. 155(2011), pp.257-265.

Google Scholar

[11] N.G.V. Fundador, Y. Enomoto-Rogers, A. Takemura: Polymer Degradation and Stability Vol. 98(2013), pp.1064-1071.

DOI: 10.1016/j.polymdegradstab.2013.01.010

Google Scholar

[12] J.B. Li, S.C. Cai, Y.M. Luo: Appl. Environ. Microbiol Vol. 77(2011), pp.6141-6147.

Google Scholar

[13] D.Y. Min, Q.Z. Li, H. Jameel: Biomass and Bioenergy Vol. 35(2011), pp.3514-3521.

Google Scholar

[14] Y. Yu, D.D. Meng, X.H. Chen, F.L. Li: Enzyme and Microbial Technology Vol. 53(2013), pp.194-199.

Google Scholar

[15] K. Toth, G.M.P. Van, H.A. Schols: BioEnergy Research Vol. 6(2013), pp.631-643.

Google Scholar

[16] K. Petzold, K. Schwikal, T. Heinze: Carbohydrate Polymers Vol. 64(2006), pp.292-298.

DOI: 10.1016/j.carbpol.2005.11.037

Google Scholar

[17] N.G.V. Fundador, Y. Enomoto-Rogers, A. Takemura: Carbohydrate Polymers Vol. 87(2012), pp.170-176.

DOI: 10.1016/j.carbpol.2011.07.034

Google Scholar

[18] K. Petzold, W. Günther, M. Kötteritzsch, T. Heinze: Carbohydrate Polymers Vol. 74(2008), pp.327-332.

DOI: 10.1016/j.carbpol.2008.02.018

Google Scholar

[19] J.L. Ren, X.W. Peng, P. Feng, R.C. Sun: Fibers and Polymers Vol. 14(2013), pp.16-21.

Google Scholar