Impact Properties of Particulate Reinforced Aluminum Matrix Composites

Article Preview

Abstract:

TiB2 particulate reinforcing 7449 aluminum matrix composites were fabricated by in situ method. Their microstructure and impact properties were investigated. The impact toughness decreases with the increase of the weight fraction of the particulate whereas the hardness of the composites increases. The decrease of impact toughness could be accounted for the particulate cluster and brittle clusions. The increase of the hardness is due to fine grain size and high dislocation density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-236

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Girot FA, Quenisset JM, Naslain R. Discontinuously-reinforced aluminum matrix composites. Compos Sci Technol 1987; 30: 155.

DOI: 10.1016/0266-3538(87)90007-8

Google Scholar

[2] Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites-a review. J Mater Sci 1991; 26: 1137.

DOI: 10.1007/bf00544448

Google Scholar

[3] Miracle DB. Metal matrix composites - From science to technological significance. Compos Sci Technol 2005; 65: 2526.

Google Scholar

[4] Torralba JM, Da Costa CE, Velasco F. P/M aluminum matrix composites: an overview. J Mater Process Tech 2003; 133: 203.

Google Scholar

[5] Rawal S. Metal-matrix composites for space applications. Jom-Us 2001; 53: 14.

Google Scholar

[6] Ph. Lequeu PLTW. Aluminum alloy developmen for the airbus A380-part2. Advanced materials &Process 2007: 41.

Google Scholar

[7] Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mat Sci Eng R 2000; 29: 49.

Google Scholar

[8] Mortensen A, Jin I. Solidification processing of metal matrix composites. Int Mater Rev 1992; 37: 101.

Google Scholar

[9] Lloyd DJ. The solidification microstructure of particulate reinforced aluminium/SiC composites. Compos Sci Technol 1989; 35: 159.

DOI: 10.1016/0266-3538(89)90093-6

Google Scholar

[10] Arsenault RJ, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Materials Science and Engineering 1986; 81: 175.

DOI: 10.1016/0025-5416(86)90261-2

Google Scholar

[11] Kamikawa N, Huang X, Tsuji N, Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 2009; 57: 4198.

DOI: 10.1016/j.actamat.2009.05.017

Google Scholar

[12] Arsenault RJ, Wang L, Feng CR. Strengthening of composites due to microstructural changes in the matrix. Acta Metallurgica et Materialia 1991; 39: 47.

DOI: 10.1016/0956-7151(91)90327-w

Google Scholar

[13] Wang F, Ma N, Li Y, Li X, Wang H. Impact behavior of in situ TiB2/Al composite at various temperatures. J Mater Sci 2011; 46: 5192.

DOI: 10.1007/s10853-011-5454-3

Google Scholar

[14] Ozden S, Ekici R, Nair F. Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. 2007; 38: 484.

DOI: 10.1016/j.compositesa.2006.02.026

Google Scholar