Improve Efficiency of Organic Solar Cell by Adding Dispersed ZnO Nanoparticles

Article Preview

Abstract:

The poly (3-hexylthiophene) (P3HT) is a promising candidate material for using in polymer solar cells researches due to its good absorbance and stability. In this study, we present the electro-optical performance of organic polymer solar cells based on P3HT: [6,-phenyl-C61-butyric acid methyl ester (PCBM) with weight ratio of 1:1. We added ZnO nanoparticles into the blending of P3HT and PCBM to improve the performance of polymer solar cells. ZnO nanoparticles are very promising inorganic metal oxides for use in organic solar cells because of its low cost, nontoxicity, high reflectance and good electron transport properties. The morphology of polymer solar cell was improved due to the additional of ZnO nanoparticles. The effects of thermal annealing on the solar cell had been studied. The post-annealing shows significant improvement in the performance for solar cell. How to prevent ZnO nanoparticles to agglomerate is essential as they are added to the active layer of the solar cell. Well dispersed ZnO nanoparticles are obtained by using the methanol solvent. The best performances of the solar cell with short-circuit current density of 14.66 mW/cm2 and efficiency of 3.92% can be obtained after post-annealed with well being dispersed 1.3wt% ZnO nanoparticles in the active layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-51

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. C. Krebs: Solar Energy Materials & Solar Cells Vol. 93(2009), p.394.

Google Scholar

[2] G. Dennler, M. C. Scharber, and C. J. Brabec: Adv. Mater. Vol. 21(2009), p.1323.

Google Scholar

[3] M. T. Dang , L. Hirsch , and G. Wantz: Adv. Mater. Vol. 23 (2011), p.3597.

Google Scholar

[4] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger: Adv. Funct. Mater. Vol. 15 (2005) , p.1617.

Google Scholar

[5] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant: Appl. Phys. Lett. Vol. 86 (2005) , p.063502.

Google Scholar

[6] G. Li, V. Shrotriya, Y. Yao, and Y. Yang: J. Appl. Phys. Vol. 98 (2005), p.043704.

Google Scholar

[7] F. C. Krebs: Organic Electronics Vol. 10 (2009), p.761.

Google Scholar

[8] P. Panek, M. Lipinski, and J. Dutkiewcz: J. Mater. Sci. Vol. 40 (2005), p.1459.

Google Scholar

[9] J. H. Bang and P. V. Kamat: ACS Nano Vol. 3 (2009), p.1467.

Google Scholar

[10] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang: Nature Mater. Vol. 4 (2005), p.864.

Google Scholar

[11] M. Shin, H. Kim, and Y. Kim: Macromolecular Research Vol. 18 (2010), p.709.

Google Scholar

[12] Y. Kim, S. Cook, S. M. Tuladhar, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, and M. Ree: Nature Mater. Vol. 5 (2006), p.197.

DOI: 10.1038/nmat1574

Google Scholar

[13] T. Ameri, G. Dennler, C. Lungenschmied and C. J. Brabec: Energy Environ. Sci. Vol. 2 (2009) , p.347.

Google Scholar

[14] M. Skompska: Synth. Met. Vol. 160 (2010), p.1.

Google Scholar

[15] J. Peet, A.J. Heeger, G.C. Bazan: Acc. Chem. Res. Vol. 42 (2009), p.1700.

Google Scholar

[16] K. Kim, B. Jung, J. Kim,W. Kim: Solar Energy Materials & Solar Cells Vol. 94(2010), p.1835.

Google Scholar

[17] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend: Phys. Rev. Vol. B 67 (2003), p.064203.

Google Scholar

[18] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen,K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw: Nature Vol. 401 (1999), p.685.

DOI: 10.1038/44359

Google Scholar

[19] F. Padinger, R. S. Rittberger, N. S. Sariciftci: Adv. Funct. Mater. Vol. 2 (2003), p.13.

Google Scholar

[20] R. Rhodes, S. Asgphar, R. Krakow, M. Horie, Z. Wang, M.L. Turner, B.R. Saunders: Colloid Surf. Vol. A 343 (2009), p.50.

Google Scholar

[21] M. Nagao: J. Phys. Chem. Vol. 75 (1971), p.3822.

Google Scholar

[22] S. Liufu, H. Xiao, Y. Li: Mater. Chem. Phys. Vol. 95 (2006), p.177.

Google Scholar

[23] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec: Adv. Mater. Vol. 18 (2006), p.789.

DOI: 10.1002/adma.200501717

Google Scholar