Analytical Prediction Model for Fatigue Crack Propagation Rate under Tension-Compression Loading

Article Preview

Abstract:

Elastic–plastic finite element analyses have been performed to study the compressive stress effect on fatigue crack growth under applied tension–compression loading. The near crack tip stress, crack tip opening displacement and crack tip plastic zone size were obtained for a kinematic hardening material. The results have shown that the near crack tip local stress, displacement and reverse plastic zone size are controlled by the maximum stress intensity factors Kmax and the applied compressive stress σmaxcom under tension–compression. Based on the finite element analysis results, a fatigue crack propagation model using Kmax and σmaxcom as a parameters under tension–compression loading has been developed.The models under tension–compression loading agreed well with experimental observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-461

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.C. Paris, M. Gomez and W.E. Anderson Thend Eng Vol. 13(1961), p.9.

Google Scholar

[2] F.S. Silva Int J Fatigue Vol. 26(2004), p.241.

Google Scholar

[3] F.S. Silva Int J Fatigue Vol. 27(2005), p.1441.

Google Scholar

[4] F.S. Silva ]Int J Fatigue Vol. 29(2007), p. (1957).

Google Scholar

[5] M.T. Yu , T.H. Topper and P. Au Fatigue 84, 2nd International Conference on Fatigue and Fatigue Threshold. Birmingham, UK, (1984).

Google Scholar

[6] Mda Fonte , F. Romeiro and Mde Freitas etc. Int J Fatigue Vol. 25(2003), p.1209.

Google Scholar

[7] G.R. Irwin Trans. ASME, Applied Mechanics Vol. 24 (1957), p.361.

Google Scholar

[8] D.S. Dugdale J. Mech. Phys Vol. 8 (1960), p.100.

Google Scholar

[9] R.M. McMeeking J. Mech. Phys. Solids Vol. 25(1977), p.357.

Google Scholar

[10] R.M. McMeeking, D.M. Parks ASTM STP Vol. 668(1979), p.175.

Google Scholar

[11] J.Z. Zhang, S. Y. Du Engng Fract Mech Vol. 69(2001), p.1591.

Google Scholar

[12] J.Z. Zhang, Z.X. Meng Script Materialia Vol. 50(2004), p.825.

Google Scholar

[13] J.Z. Zhang, X.D. He and S. Y. Du International Journal of Fatigue Vol. 27(2005), p.1314.

Google Scholar

[14] J. Z. Zhang Engng. Fract. Mech Vol. 65(2000), p.665.

Google Scholar

[15] J. Z. Zhang, X.D. He and S. Y. Du Int J Fatigue Vol. 29(2007), p.1751.

Google Scholar

[16] A.K. Vasudevan, K. Sadananda and N. Louat Scripata Metall Vol. 28(1993), p.65.

Google Scholar

[17] A.K. Vasudevan, K. Sadananda and N. Louat Mater Sci Eng A Vol. 188 (1994), p.1.

Google Scholar

[18] J.Z. Zhang, X.D. He and Y. Sha Int J Fatigue Vol. 32(2011), p.361.

Google Scholar