Inverse Generalized Harmonic Numbers with Riordan Arrays

Article Preview

Abstract:

In this paper, By observing that the infinite triangle obtained from some generalized harmonic numbers follows a Riordan array, we obtain connections between the Stirling numbers of both kinds and other inverse generalized harmonic numbers. Further, we proved some combinatorial sums and inverse generalized harmonic number identities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

750-753

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Adamchik: On Stirling and Euler sums. J. Comput. Appl. Math., 79(1997)119-130.

Google Scholar

[2] A.T. Benjamin, D. Gaebler, R. Gaebler: A combinatorial approach to hyperharmonic numbers. Integers, 3(2003)1-9.

Google Scholar

[3] G. Cheon, M.E.A. EI-Mikkawy: Generalized harmonic numbers with Riordan arrays. J. Number Theory, 128(2008)413-425.

DOI: 10.1016/j.jnt.2007.08.011

Google Scholar

[4] W. Chu: Harmonic number identities and Hermite-Pade approximations to the logarthm function. J. Approx. Theory, 137(2005)42-56.

DOI: 10.1016/j.jat.2005.07.008

Google Scholar

[5] Anne Gertsch: Generalized harmonic numbers. in: Number Theory, C. R. Acad. Sci. Paris Ser. I 324 (1997)7-10.

Google Scholar

[6] I.M. Gessel: On Mini's identity for Bernoulli numbers. J. Number Theory, 110(2005)75-82.

Google Scholar

[7] D. Merlini: On some alternative characterizations of Riordan array. Canad J. Math., 49(2)79(1997)301-320.

Google Scholar

[8] D.G. Rogers: Catalan numbers and renewal array. Discrete Math., 171(1997)229-235.

Google Scholar

[9] J.M. Santmyer: AStirling like sequence of rational numbers. Discrete Math., 171(1997)229-235.

DOI: 10.1016/s0012-365x(96)00082-9

Google Scholar

[10] R. Sprugnoli: Riordan array and combinatorial sums. discrete Math., 132(1994)267-290.

DOI: 10.1016/0012-365x(92)00570-h

Google Scholar