[1]
V.S. Adamchik: On Stirling and Euler sums. J. Comput. Appl. Math., 79(1997)119-130.
Google Scholar
[2]
A.T. Benjamin, D. Gaebler, R. Gaebler: A combinatorial approach to hyperharmonic numbers. Integers, 3(2003)1-9.
Google Scholar
[3]
G. Cheon, M.E.A. EI-Mikkawy: Generalized harmonic numbers with Riordan arrays. J. Number Theory, 128(2008)413-425.
DOI: 10.1016/j.jnt.2007.08.011
Google Scholar
[4]
W. Chu: Harmonic number identities and Hermite-Pade approximations to the logarthm function. J. Approx. Theory, 137(2005)42-56.
DOI: 10.1016/j.jat.2005.07.008
Google Scholar
[5]
Anne Gertsch: Generalized harmonic numbers. in: Number Theory, C. R. Acad. Sci. Paris Ser. I 324 (1997)7-10.
Google Scholar
[6]
I.M. Gessel: On Mini's identity for Bernoulli numbers. J. Number Theory, 110(2005)75-82.
Google Scholar
[7]
D. Merlini: On some alternative characterizations of Riordan array. Canad J. Math., 49(2)79(1997)301-320.
Google Scholar
[8]
D.G. Rogers: Catalan numbers and renewal array. Discrete Math., 171(1997)229-235.
Google Scholar
[9]
J.M. Santmyer: AStirling like sequence of rational numbers. Discrete Math., 171(1997)229-235.
DOI: 10.1016/s0012-365x(96)00082-9
Google Scholar
[10]
R. Sprugnoli: Riordan array and combinatorial sums. discrete Math., 132(1994)267-290.
DOI: 10.1016/0012-365x(92)00570-h
Google Scholar