Change of Leaf Morphology along Altitudinal Gradients

Article Preview

Abstract:

It is the most effective way to study the effect of global warming on plant morphology by analyzing a plant species on a mount along altitudinal gradients. Altitudinal increase means decrease of temperature and metabolic rate as well. This might affect the leaf morphology greatly. The SEM study reveals that the size of nanopore on the epidermis changes gradually along altitudinal gradients, and the absorbed fine particles on the leaf have almost same size, exhibiting high selectivity over other particles. The study gives a strong proof that morphology change links to global warming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-96

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.P. Beckett P.H. Freer-Smith, G.Taylor, Urban woodlands: their role in reducing the effects of particulate pollution, Environmental Pollution 99(1998)347-360

DOI: 10.1016/s0269-7491(98)00016-5

Google Scholar

[2] C. Bergmann, Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grolsse. Gottinger Studien, Pt. 1(1847) 595-708

Google Scholar

[3] R.Chen, J.H.He, H.Y. Kong, Waterproof and Dustproof of Wild Silk: A Theoretical Explanation, Journal of Nano Research 22(2013) 61-63

DOI: 10.4028/www.scientific.net/jnanor.22.61

Google Scholar

[4] C.A. Darveau, R.K. Suarez, R.D. Andrews & P.W. Hochachka, Allometric cascade as a unifying principle of body mass effects on metabolism. Nature, 417(2002)166-170

DOI: 10.1038/417166a

Google Scholar

[5] B.J. Enguist, J.H. Brown, G.B. West, Allometric scaling of plant energetics and population density, Nature, 395(1998) 163-165.

DOI: 10.1038/25977

Google Scholar

[6] J.H.He, H. Chen, Effects of size and pH on metabolic rate, International Journal of Nonlinear Sciences and Numerical Simulation 4 (2003)429-432

Google Scholar

[7] J.H. He, Cell size and cell number as links between noncoding DNA and metabolic rate scaling Chaos, Solitons & Fractals, 28(2006)1026-1028

DOI: 10.1016/j.chaos.2005.08.143

Google Scholar

[8] J.H. He, Z. Huang, A novel model for allometric scaling laws for different organs , Chaos, Solitons & Fractals, 27(2006)1108-1114

DOI: 10.1016/j.chaos.2005.04.082

Google Scholar

[9] J.H.He, Shrinkage of body size of small insects: A possible link to global warming? Chaos Soliton. Fract., 34(2007)727-729

DOI: 10.1016/j.chaos.2006.04.052

Google Scholar

[10] J.H.He, Fatalness of virus depends upon its cell fractal geometry, Chaos Soliton. Fract., 38(2008)1390-1393

DOI: 10.1016/j.chaos.2008.04.018

Google Scholar

[11] M.Kaspari, Global energy gradients and size in colonial organisms: Worker mass and worker number in ant colonies, PNAS, 102(2005)5079–5083

DOI: 10.1073/pnas.0407827102

Google Scholar

[12] H.Y. Kong, J.H.He, R. Chen, Highly Selective Adsorption of Plants' Leaves on Nanoparticles, Journal of Nano Research , 22(2013) 71-84

DOI: 10.4028/www.scientific.net/jnanor.22.71

Google Scholar

[13] J. Kozlowski, M. Konarzewski, A.T. Gawelczyk, Cell size as a link between noncoding DNA and metabolic rate scaling, P. Natl. Acad. Sci. USA, 100(2003)14080-14085

DOI: 10.1073/pnas.2334605100

Google Scholar

[14] W.Liao, X. Lu, Adult body size = f (initial size + growth rate x age): explaining the proximate cause of Bergman's cline in a toad along altitudinal gradients, Evol. Ecol., 26(2012) 579-590

DOI: 10.1007/s10682-011-9501-y

Google Scholar

[15] V.M. Savage, J.F. Gillooly, J.H. Brown, G.B. West, E.L. Charnov, Effects of body size and temperature on population growth, The American Naturalist, 163(3) (2004) 429-441

DOI: 10.1086/381872

Google Scholar

[16] K.M. Sendall, P.B. Reich, Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree physiology   33(2013) 713-29

DOI: 10.1093/treephys/tpt048

Google Scholar

[17] G.B. West, J.H. Brown B.J. Enquist , A general model for origin of allometric scaling laws in biology, Science, 276(1997)122-126

DOI: 10.1126/science.276.5309.122

Google Scholar

[18] C.R. White , R.S. Seymour, Sample size and mass range effects on the allometric exponent of basal metabolic rate, Comparative Biochemistry and Physiology, Part A 142(2005) 74-78

DOI: 10.1016/j.cbpa.2005.07.013

Google Scholar

[19] E.R. Yan, X.H. Wang, S.X. Chang, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests , Tree Physiology, 33(2013)609-617

DOI: 10.1093/treephys/tpt042

Google Scholar