[1]
K.P. Beckett P.H. Freer-Smith, G.Taylor, Urban woodlands: their role in reducing the effects of particulate pollution, Environmental Pollution 99(1998)347-360
DOI: 10.1016/s0269-7491(98)00016-5
Google Scholar
[2]
C. Bergmann, Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grolsse. Gottinger Studien, Pt. 1(1847) 595-708
Google Scholar
[3]
R.Chen, J.H.He, H.Y. Kong, Waterproof and Dustproof of Wild Silk: A Theoretical Explanation, Journal of Nano Research 22(2013) 61-63
DOI: 10.4028/www.scientific.net/jnanor.22.61
Google Scholar
[4]
C.A. Darveau, R.K. Suarez, R.D. Andrews & P.W. Hochachka, Allometric cascade as a unifying principle of body mass effects on metabolism. Nature, 417(2002)166-170
DOI: 10.1038/417166a
Google Scholar
[5]
B.J. Enguist, J.H. Brown, G.B. West, Allometric scaling of plant energetics and population density, Nature, 395(1998) 163-165.
DOI: 10.1038/25977
Google Scholar
[6]
J.H.He, H. Chen, Effects of size and pH on metabolic rate, International Journal of Nonlinear Sciences and Numerical Simulation 4 (2003)429-432
Google Scholar
[7]
J.H. He, Cell size and cell number as links between noncoding DNA and metabolic rate scaling Chaos, Solitons & Fractals, 28(2006)1026-1028
DOI: 10.1016/j.chaos.2005.08.143
Google Scholar
[8]
J.H. He, Z. Huang, A novel model for allometric scaling laws for different organs , Chaos, Solitons & Fractals, 27(2006)1108-1114
DOI: 10.1016/j.chaos.2005.04.082
Google Scholar
[9]
J.H.He, Shrinkage of body size of small insects: A possible link to global warming? Chaos Soliton. Fract., 34(2007)727-729
DOI: 10.1016/j.chaos.2006.04.052
Google Scholar
[10]
J.H.He, Fatalness of virus depends upon its cell fractal geometry, Chaos Soliton. Fract., 38(2008)1390-1393
DOI: 10.1016/j.chaos.2008.04.018
Google Scholar
[11]
M.Kaspari, Global energy gradients and size in colonial organisms: Worker mass and worker number in ant colonies, PNAS, 102(2005)5079–5083
DOI: 10.1073/pnas.0407827102
Google Scholar
[12]
H.Y. Kong, J.H.He, R. Chen, Highly Selective Adsorption of Plants' Leaves on Nanoparticles, Journal of Nano Research , 22(2013) 71-84
DOI: 10.4028/www.scientific.net/jnanor.22.71
Google Scholar
[13]
J. Kozlowski, M. Konarzewski, A.T. Gawelczyk, Cell size as a link between noncoding DNA and metabolic rate scaling, P. Natl. Acad. Sci. USA, 100(2003)14080-14085
DOI: 10.1073/pnas.2334605100
Google Scholar
[14]
W.Liao, X. Lu, Adult body size = f (initial size + growth rate x age): explaining the proximate cause of Bergman's cline in a toad along altitudinal gradients, Evol. Ecol., 26(2012) 579-590
DOI: 10.1007/s10682-011-9501-y
Google Scholar
[15]
V.M. Savage, J.F. Gillooly, J.H. Brown, G.B. West, E.L. Charnov, Effects of body size and temperature on population growth, The American Naturalist, 163(3) (2004) 429-441
DOI: 10.1086/381872
Google Scholar
[16]
K.M. Sendall, P.B. Reich, Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree physiology 33(2013) 713-29
DOI: 10.1093/treephys/tpt048
Google Scholar
[17]
G.B. West, J.H. Brown B.J. Enquist , A general model for origin of allometric scaling laws in biology, Science, 276(1997)122-126
DOI: 10.1126/science.276.5309.122
Google Scholar
[18]
C.R. White , R.S. Seymour, Sample size and mass range effects on the allometric exponent of basal metabolic rate, Comparative Biochemistry and Physiology, Part A 142(2005) 74-78
DOI: 10.1016/j.cbpa.2005.07.013
Google Scholar
[19]
E.R. Yan, X.H. Wang, S.X. Chang, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests , Tree Physiology, 33(2013)609-617
DOI: 10.1093/treephys/tpt042
Google Scholar