[1]
D.A. Benson, M.M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective, Advances in Water Resources, 51(2013)479-497.
DOI: 10.1016/j.advwatres.2012.04.005
Google Scholar
[2]
D.A. Di Carlo, M. Mirzaei, B. Aminzadeh, et al., Fractional Flow Approach to Saturation Overshoot, Transport in Porous Media, 91(3)( 2012) 955-971.
DOI: 10.1007/s11242-011-9885-8
Google Scholar
[3]
J. Fan, J.H. He, Biomimic design of multi-scale fabric with efficient heat transfer property, Thermal Science, 16(5)( 2012)1349 – 1352.
DOI: 10.2298/tsci1205349f
Google Scholar
[4]
J. Fan, J.H. He, Fractal Derivative Model for Air Permeability in Hierarchic Porous Media, Abstract and Applied Analysis, 2012, 354701.
DOI: 10.1155/2012/354701
Google Scholar
[5]
H. Ferguson, W.R. Gardner, Diffusion theory applied to water flow data obtained using gamma ray absorption, Soil Sci. Soc. Am. Proc., 27 (1963) 243–246.
DOI: 10.2136/sssaj1963.03615995002700030010x
Google Scholar
[6]
W. Gardner, J.A. Widtsoe, The movement of soil moisture, Soil Sci., 11(1921)215–223.
DOI: 10.1097/00010694-192103000-00003
Google Scholar
[7]
E. Gerolymatou, I. Vardoulakis, R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model, Journal of Physics D, 39(18)( 2006) 4104-4110.
DOI: 10.1088/0022-3727/39/18/022
Google Scholar
[8]
L. Guarracino, J.E. Santos, Stochastic modeling of variably saturated transient flow in fractal porous media, Mathematical Geology, 26(2)(2004) 217-238.
DOI: 10.1023/b:matg.0000020471.33189.8c
Google Scholar
[9]
J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20(2006) 1141-1199.
DOI: 10.1142/s0217979206033796
Google Scholar
[10]
J.H. He, Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, Article ID 916793, 2012.
Google Scholar
[11]
J.H. He, S.K. Elagan, Z.B.Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376(4)(2012) 257-259.
DOI: 10.1016/j.physleta.2011.11.030
Google Scholar
[12]
J.H. He, Z.B.Li, Converting fractional differential equations into partical differential equations, Thermal Science, 16(2)( 2012)331-334.
DOI: 10.2298/tsci110503068h
Google Scholar
[13]
J.H. He, A new fractal derivation, Thermal Science, 15(2011) S145-S147.
Google Scholar
[14]
E.E. Miller, R.D. Miller, Physical theory for capillary flow phenomena. J. Appl. Phys. 27(1956) 324–332.
Google Scholar
[15]
Y. Pachepsky, D. Timlin, W. Rawls, Generalized Richards' equation to simulate water transport in unsaturated soils, Journal of Hydrology, 272(2003) 3-13.
DOI: 10.1016/s0022-1694(02)00251-2
Google Scholar
[16]
M. Ramos, J. Aguirre-Puente, R.P. Canon, Soil freezing problem: an exact solution, Soil Technology 9(1996)29-38.
DOI: 10.1016/0933-3630(95)00033-x
Google Scholar
[17]
S.L. Rawlins, W.H. Gardner, A test of the validity of the diffusion equation for unsaturated flow of soil water, Soil Sci. Soc. Am. Proc., 27(1963) 507–511.
DOI: 10.2136/sssaj1963.03615995002700050012x
Google Scholar
[18]
L.A. Richards, Capillary conduction of liquids through porous media. Physics 1(1931) 318–333.
Google Scholar
[19]
M. Sadeghi, B. Ghahraman, A.N. Ziaei, K. Davary, K. Reichardt, Additional scaled solutions to Richards' equation for infiltration and drainage, Soil and Tillage Research, 19(2012) 60-69.
DOI: 10.1016/j.still.2011.12.004
Google Scholar
[20]
C. Tegnander, Models for ground water flow: A numerical comparison between Richards' model and the fractional flow model, Transport in Porous Media, 43(2)( 2001)213-224.
Google Scholar
[21]
X.J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.
Google Scholar
[22]
X. J.Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011.
Google Scholar
[23]
J. Zhou, F. Liu, J.-H. He, On Richards' equation for water transport in unsaturated soils and porous fabrics, Computers and Geotechnics 54 (2013) 69–71.
DOI: 10.1016/j.compgeo.2013.06.004
Google Scholar