An Exact Solution to the Local Fractional Richards' Equation for Unsaturated Soils and Porous Fabrics

Article Preview

Abstract:

A local fractional Richards equation is derived by considering the soil as fractal porous media, and an exact solution is obtained by a generalized Boltzmann transform and the fractional complex transform. The new theory predicts that the volumetric water content depends on the ratio (distance)2a /(time), where a is the value of fractal dimensions of the porous soil, and its value is recommended for various soils.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-101

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.A. Benson, M.M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective, Advances in Water Resources, 51(2013)479-497.

DOI: 10.1016/j.advwatres.2012.04.005

Google Scholar

[2] D.A. Di Carlo, M. Mirzaei, B. Aminzadeh, et al., Fractional Flow Approach to Saturation Overshoot, Transport in Porous Media, 91(3)( 2012) 955-971.

DOI: 10.1007/s11242-011-9885-8

Google Scholar

[3] J. Fan, J.H. He, Biomimic design of multi-scale fabric with efficient heat transfer property, Thermal Science, 16(5)( 2012)1349 – 1352.

DOI: 10.2298/tsci1205349f

Google Scholar

[4] J. Fan, J.H. He, Fractal Derivative Model for Air Permeability in Hierarchic Porous Media, Abstract and Applied Analysis, 2012, 354701.

DOI: 10.1155/2012/354701

Google Scholar

[5] H. Ferguson, W.R. Gardner, Diffusion theory applied to water flow data obtained using gamma ray absorption, Soil Sci. Soc. Am. Proc., 27 (1963) 243–246.

DOI: 10.2136/sssaj1963.03615995002700030010x

Google Scholar

[6] W. Gardner, J.A. Widtsoe, The movement of soil moisture, Soil Sci., 11(1921)215–223.

DOI: 10.1097/00010694-192103000-00003

Google Scholar

[7] E. Gerolymatou, I. Vardoulakis, R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model, Journal of Physics D, 39(18)( 2006) 4104-4110.

DOI: 10.1088/0022-3727/39/18/022

Google Scholar

[8] L. Guarracino, J.E. Santos, Stochastic modeling of variably saturated transient flow in fractal porous media, Mathematical Geology, 26(2)(2004) 217-238.

DOI: 10.1023/b:matg.0000020471.33189.8c

Google Scholar

[9] J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20(2006) 1141-1199.

DOI: 10.1142/s0217979206033796

Google Scholar

[10] J.H. He, Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, Article ID 916793, 2012.

Google Scholar

[11] J.H. He, S.K. Elagan, Z.B.Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376(4)(2012) 257-259.

DOI: 10.1016/j.physleta.2011.11.030

Google Scholar

[12] J.H. He, Z.B.Li, Converting fractional differential equations into partical differential equations, Thermal Science, 16(2)( 2012)331-334.

DOI: 10.2298/tsci110503068h

Google Scholar

[13] J.H. He, A new fractal derivation, Thermal Science, 15(2011) S145-S147.

Google Scholar

[14] E.E. Miller, R.D. Miller, Physical theory for capillary flow phenomena. J. Appl. Phys. 27(1956) 324–332.

Google Scholar

[15] Y. Pachepsky, D. Timlin, W. Rawls, Generalized Richards' equation to simulate water transport in unsaturated soils, Journal of Hydrology, 272(2003) 3-13.

DOI: 10.1016/s0022-1694(02)00251-2

Google Scholar

[16] M. Ramos, J. Aguirre-Puente, R.P. Canon, Soil freezing problem: an exact solution, Soil Technology 9(1996)29-38.

DOI: 10.1016/0933-3630(95)00033-x

Google Scholar

[17] S.L. Rawlins, W.H. Gardner, A test of the validity of the diffusion equation for unsaturated flow of soil water, Soil Sci. Soc. Am. Proc., 27(1963) 507–511.

DOI: 10.2136/sssaj1963.03615995002700050012x

Google Scholar

[18] L.A. Richards, Capillary conduction of liquids through porous media. Physics 1(1931) 318–333.

Google Scholar

[19] M. Sadeghi, B. Ghahraman, A.N. Ziaei, K. Davary, K. Reichardt, Additional scaled solutions to Richards' equation for infiltration and drainage, Soil and Tillage Research, 19(2012) 60-69.

DOI: 10.1016/j.still.2011.12.004

Google Scholar

[20] C. Tegnander, Models for ground water flow: A numerical comparison between Richards' model and the fractional flow model, Transport in Porous Media, 43(2)( 2001)213-224.

Google Scholar

[21] X.J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

Google Scholar

[22] X. J.Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011.

Google Scholar

[23] J. Zhou, F. Liu, J.-H. He, On Richards' equation for water transport in unsaturated soils and porous fabrics, Computers and Geotechnics 54 (2013) 69–71.

DOI: 10.1016/j.compgeo.2013.06.004

Google Scholar