[1]
Y. Lei, J. Lin, Z. He, and M. J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, vol. 35, no. 1–2, p.108–126, Feb. (2013).
DOI: 10.1016/j.ymssp.2012.09.015
Google Scholar
[2]
J. Chen, Y. Zi, Z. He, and X. Wang, Adaptive redundant multiwavelet denoising with improved neighboring coefficients for gearbox fault detection, Mechanical Systems and Signal Processing, vol. 38, no. 2, p.549–568, Jul. (2013).
DOI: 10.1016/j.ymssp.2013.03.005
Google Scholar
[3]
J. Jiao, W. Liu, J. Zhang, Q. Zhang, C. He, and B. Wu, Time–frequency analysis for ultrasonic measurement of liquid-layer thickness, Mechanical Systems and Signal Processing, vol. 35, no. 1–2, p.69–83, Feb. (2013).
DOI: 10.1016/j.ymssp.2012.08.015
Google Scholar
[4]
S. D. Nguyen, K. N. Ngo, Q. T. Tran, and S. -B. Choi, A new method for beam-damage-diagnosis using adaptive fuzzy neural structure and wavelet analysis, Mechanical Systems and Signal Processing, p.1–14, Apr. (2013).
DOI: 10.1016/j.ymssp.2013.03.023
Google Scholar
[5]
S. R. Qin and Y. M. Zhong, Research on the unified mathematical model for FT, STFT and WT and its applications, Mechanical Systems and Signal Processing, vol. 18, no. 6, p.1335–1347, Nov. (2004).
DOI: 10.1016/j.ymssp.2003.12.002
Google Scholar
[6]
Z. K. Peng and F. L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical Systems and Signal Processing, vol. 18, no. 2, p.199–221, Mar. (2004).
DOI: 10.1016/s0888-3270(03)00075-x
Google Scholar
[7]
D. Boulahbal, M. Farid Golnaraghi, and F. Ismail, Amplitude and phase wavelet maps for the detection of cracks in geared systems, Mechanical Systems and Signal Processing, vol. 13, p.423–436, (1999).
DOI: 10.1006/mssp.1998.1206
Google Scholar
[8]
X. Wang, V. Makis, and M. Yang, A wavelet approach to fault diagnosis of a gearbox under varying load conditions, Journal of Sound and Vibration, vol. 329, no. 9, p.1570–1585, Apr. (2010).
DOI: 10.1016/j.jsv.2009.11.010
Google Scholar
[9]
N. Li, R. Zhou, Q. Hu, and X. Liu, Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine, Mechanical Systems and Signal Processing, vol. 28, p.608–621, Apr. (2012).
DOI: 10.1016/j.ymssp.2011.10.016
Google Scholar
[10]
H. Li, Y. Zhang, and H. Zheng, Application of Hermitian wavelet to crack fault detection in gearbox, Mechanical Systems and Signal Processing, vol. 25, no. 4, p.1353–1363, May (2011).
DOI: 10.1016/j.ymssp.2010.11.008
Google Scholar
[11]
W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement, Mechanical Systems and Signal Processing, vol. 24, no. 5, p.1458–1472, Jul. (2010).
DOI: 10.1016/j.ymssp.2009.11.011
Google Scholar
[12]
B. M. Ebrahimi, J. Faiz, S. Lotfi-fard, and P. Pillay, Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform, Mechanical Systems and Signal Processing, vol. 30, p.131–145, Jul. (2012).
DOI: 10.1016/j.ymssp.2012.01.026
Google Scholar
[13]
Y. Lei, Z. He, and Y. Zi, Application of the EEMD method to rotor fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, vol. 23, no. 4, p.1327–1338, May (2009).
DOI: 10.1016/j.ymssp.2008.11.005
Google Scholar
[14]
C. Guo, M. a. AL-Shudeifat, J. Yan, L. a. Bergman, D. M. McFarland, and E. a. Butcher, Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack, Journal of Sound and Vibration, vol. 332, no. 16, p.3881–3892, Aug. (2013).
DOI: 10.1016/j.jsv.2013.02.031
Google Scholar
[15]
J. Zheng, J. Cheng, and Y. Yang, Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis, Mechanical Systems and Signal Processing, p.1–18, May (2013).
DOI: 10.1016/j.ymssp.2013.04.005
Google Scholar
[16]
S. Zhao, L. Liang, G. Xu, J. Wang, and W. Zhang, Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method, Mechanical Systems and Signal Processing, p.1–24, May (2013).
DOI: 10.1016/j.ymssp.2013.04.006
Google Scholar
[17]
Z. Shen, X. Chen, X. Zhang, and Z. He, A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM, Measurement, vol. 45, no. 1, p.30–40, Jan. (2012).
DOI: 10.1016/j.measurement.2011.10.008
Google Scholar
[18]
P. C. Chu, C. Fan, and N. Huang, Derivative-optimized empirical mode decomposition for the Hilbert–Huang transform, Journal of Computational and Applied Mathematics, Apr. (2013).
DOI: 10.1016/j.cam.2013.03.046
Google Scholar
[19]
G. Cheng, Y. Cheng, L. Shen, J. Qiu, and S. Zhang, Gear fault identification based on Hilbert–Huang transform and SOM neural network, Measurement, vol. 46, no. 3, p.1137–1146, Apr. (2013).
DOI: 10.1016/j.measurement.2012.10.026
Google Scholar